Cargando…
Reconstruction of fluorophore absorption and fluorescence lifetime using early photon mesoscopic fluorescence molecular tomography: a phantom study
SIGNIFICANCE: Fluorescence molecular lifetime tomography (FMLT) plays an increasingly important role in experimental oncology. The article presents and experimentally verifies an original method of mesoscopic time domain FMLT, based on an asymptotic approximation to the fluorescence source function,...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Society of Photo-Optical Instrumentation Engineers
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9743783/ https://www.ncbi.nlm.nih.gov/pubmed/36519075 http://dx.doi.org/10.1117/1.JBO.27.12.126001 |
_version_ | 1784848797493362688 |
---|---|
author | Konovalov, Alexander B. Vlasov, Vitaly V. Samarin, Sergei I. Soloviev, Ilya D. Savitsky, Alexander P. Tuchin, Valery V. |
author_facet | Konovalov, Alexander B. Vlasov, Vitaly V. Samarin, Sergei I. Soloviev, Ilya D. Savitsky, Alexander P. Tuchin, Valery V. |
author_sort | Konovalov, Alexander B. |
collection | PubMed |
description | SIGNIFICANCE: Fluorescence molecular lifetime tomography (FMLT) plays an increasingly important role in experimental oncology. The article presents and experimentally verifies an original method of mesoscopic time domain FMLT, based on an asymptotic approximation to the fluorescence source function, which is valid for early arriving photons. AIM: The aim was to justify the efficiency of the method by experimental scanning and reconstruction of a phantom with a fluorophore. The experimental facility included the TCSPC system, the pulsed supercontinuum Fianium laser, and a three-channel fiber probe. Phantom scanning was done in mesoscopic regime for three-dimensional (3D) reflectance geometry. APPROACH: The sensitivity functions were simulated with a Monte Carlo method. A compressed-sensing-like reconstruction algorithm was used to solve the inverse problem for the fluorescence parameter distribution function, which included the fluorophore absorption coefficient and fluorescence lifetime distributions. The distributions were separated directly in the time domain with the QR-factorization least square method. RESULTS: 3D tomograms of fluorescence parameters were obtained and analyzed using two strategies for the formation of measurement data arrays and sensitivity matrices. An algorithm is developed for the flexible choice of optimal strategy in view of attaining better reconstruction quality. Variants on how to improve the method are proposed, specifically, through stepped extraction and further use of a posteriori information about the object. CONCLUSIONS: Even if measurement data are limited, the proposed method is capable of giving adequate reconstructions but their quality depends on available a priori (or a posteriori) information. Further research aims to improve the method by implementing the variants proposed. |
format | Online Article Text |
id | pubmed-9743783 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Society of Photo-Optical Instrumentation Engineers |
record_format | MEDLINE/PubMed |
spelling | pubmed-97437832022-12-13 Reconstruction of fluorophore absorption and fluorescence lifetime using early photon mesoscopic fluorescence molecular tomography: a phantom study Konovalov, Alexander B. Vlasov, Vitaly V. Samarin, Sergei I. Soloviev, Ilya D. Savitsky, Alexander P. Tuchin, Valery V. J Biomed Opt Imaging SIGNIFICANCE: Fluorescence molecular lifetime tomography (FMLT) plays an increasingly important role in experimental oncology. The article presents and experimentally verifies an original method of mesoscopic time domain FMLT, based on an asymptotic approximation to the fluorescence source function, which is valid for early arriving photons. AIM: The aim was to justify the efficiency of the method by experimental scanning and reconstruction of a phantom with a fluorophore. The experimental facility included the TCSPC system, the pulsed supercontinuum Fianium laser, and a three-channel fiber probe. Phantom scanning was done in mesoscopic regime for three-dimensional (3D) reflectance geometry. APPROACH: The sensitivity functions were simulated with a Monte Carlo method. A compressed-sensing-like reconstruction algorithm was used to solve the inverse problem for the fluorescence parameter distribution function, which included the fluorophore absorption coefficient and fluorescence lifetime distributions. The distributions were separated directly in the time domain with the QR-factorization least square method. RESULTS: 3D tomograms of fluorescence parameters were obtained and analyzed using two strategies for the formation of measurement data arrays and sensitivity matrices. An algorithm is developed for the flexible choice of optimal strategy in view of attaining better reconstruction quality. Variants on how to improve the method are proposed, specifically, through stepped extraction and further use of a posteriori information about the object. CONCLUSIONS: Even if measurement data are limited, the proposed method is capable of giving adequate reconstructions but their quality depends on available a priori (or a posteriori) information. Further research aims to improve the method by implementing the variants proposed. Society of Photo-Optical Instrumentation Engineers 2022-12-12 2022-12 /pmc/articles/PMC9743783/ /pubmed/36519075 http://dx.doi.org/10.1117/1.JBO.27.12.126001 Text en © 2022 The Authors https://creativecommons.org/licenses/by/4.0/Published by SPIE under a Creative Commons Attribution 4.0 International License. Distribution or reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI. |
spellingShingle | Imaging Konovalov, Alexander B. Vlasov, Vitaly V. Samarin, Sergei I. Soloviev, Ilya D. Savitsky, Alexander P. Tuchin, Valery V. Reconstruction of fluorophore absorption and fluorescence lifetime using early photon mesoscopic fluorescence molecular tomography: a phantom study |
title | Reconstruction of fluorophore absorption and fluorescence lifetime using early photon mesoscopic fluorescence molecular tomography: a phantom study |
title_full | Reconstruction of fluorophore absorption and fluorescence lifetime using early photon mesoscopic fluorescence molecular tomography: a phantom study |
title_fullStr | Reconstruction of fluorophore absorption and fluorescence lifetime using early photon mesoscopic fluorescence molecular tomography: a phantom study |
title_full_unstemmed | Reconstruction of fluorophore absorption and fluorescence lifetime using early photon mesoscopic fluorescence molecular tomography: a phantom study |
title_short | Reconstruction of fluorophore absorption and fluorescence lifetime using early photon mesoscopic fluorescence molecular tomography: a phantom study |
title_sort | reconstruction of fluorophore absorption and fluorescence lifetime using early photon mesoscopic fluorescence molecular tomography: a phantom study |
topic | Imaging |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9743783/ https://www.ncbi.nlm.nih.gov/pubmed/36519075 http://dx.doi.org/10.1117/1.JBO.27.12.126001 |
work_keys_str_mv | AT konovalovalexanderb reconstructionoffluorophoreabsorptionandfluorescencelifetimeusingearlyphotonmesoscopicfluorescencemoleculartomographyaphantomstudy AT vlasovvitalyv reconstructionoffluorophoreabsorptionandfluorescencelifetimeusingearlyphotonmesoscopicfluorescencemoleculartomographyaphantomstudy AT samarinsergeii reconstructionoffluorophoreabsorptionandfluorescencelifetimeusingearlyphotonmesoscopicfluorescencemoleculartomographyaphantomstudy AT solovievilyad reconstructionoffluorophoreabsorptionandfluorescencelifetimeusingearlyphotonmesoscopicfluorescencemoleculartomographyaphantomstudy AT savitskyalexanderp reconstructionoffluorophoreabsorptionandfluorescencelifetimeusingearlyphotonmesoscopicfluorescencemoleculartomographyaphantomstudy AT tuchinvaleryv reconstructionoffluorophoreabsorptionandfluorescencelifetimeusingearlyphotonmesoscopicfluorescencemoleculartomographyaphantomstudy |