Cargando…
SCNIC: Sparse correlation network investigation for compositional data
Microbiome studies are often limited by a lack of statistical power due to small sample sizes and a large number of features. This problem is exacerbated in correlative studies of multi‐omic datasets. Statistical power can be increased by finding and summarizing modules of correlated observations, w...
Autores principales: | Shaffer, Michael, Thurimella, Kumar, Sterrett, John D., Lozupone, Catherine A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9744196/ https://www.ncbi.nlm.nih.gov/pubmed/36001047 http://dx.doi.org/10.1111/1755-0998.13704 |
Ejemplares similares
-
AMON: annotation of metabolite origins via networks to integrate microbiome and metabolome data
por: Shaffer, M., et al.
Publicado: (2019) -
CompositeSearch: A Generalized Network Approach for Composite Gene Families Detection
por: Pathmanathan, Jananan Sylvestre, et al.
Publicado: (2018) -
Development of a platform to investigate long-term potentiation in human iPSC-derived neuronal networks
por: Pré, Deborah, et al.
Publicado: (2022) -
Single-cell data clustering based on sparse optimization and low-rank matrix factorization
por: Hu, Yinlei, et al.
Publicado: (2021) -
Gap-com: general model selection criterion for sparse undirected gene networks with nontrivial community structure
por: Kuismin, Markku, et al.
Publicado: (2021)