Cargando…

A single-cell mass cytometry platform to map the effects of preclinical drugs on cartilage homeostasis

No disease-modifying drug exists for osteoarthritis (OA). Despite success in animal models, candidate drugs continue to fail in clinical trials owing to the unmapped interpatient heterogeneity and disease complexity. We used a single-cell platform based on cytometry by time-of-flight (cyTOF) to prec...

Descripción completa

Detalles Bibliográficos
Autores principales: Sahu, Neety, Grandi, Fiorella Carla, Bhutani, Nidhi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Society for Clinical Investigation 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9744259/
https://www.ncbi.nlm.nih.gov/pubmed/36194485
http://dx.doi.org/10.1172/jci.insight.160702
Descripción
Sumario:No disease-modifying drug exists for osteoarthritis (OA). Despite success in animal models, candidate drugs continue to fail in clinical trials owing to the unmapped interpatient heterogeneity and disease complexity. We used a single-cell platform based on cytometry by time-of-flight (cyTOF) to precisely outline the effects of candidate drugs on human OA chondrocytes. OA chondrocytes harvested from patients undergoing total knee arthroplasty were treated with 2 drugs, an NF-κB pathway inhibitor, BMS-345541, and a chondroinductive small molecule, kartogenin, that showed preclinical success in animal models for OA. cyTOF conducted with 30 metal isotope–labeled antibodies parsed the effects of the drugs on inflammatory, senescent, and chondroprogenitor cell populations. The NF-κB pathway inhibition decreased the expression of p–NF-κB, HIF2A, and inducible NOS in multiple chondrocyte clusters and significantly depleted 4 p16(ink4a)-expressing senescent populations, including NOTCH1(+)STRO1(+) chondroprogenitor cells. While kartogenin also affected select p16(ink4a)-expressing senescent clusters, there was a less discernible effect on chondroprogenitor cell populations. Overall, BMS-345541 elicited a uniform drug response in all patients, while only a few responded to kartogenin. These studies demonstrate that a single-cell cyTOF-based drug screening platform can provide insights into patient response assessment and patient stratification.