Cargando…

MRI-based quantification of posterior ocular globe flattening during 60 days of strict 6° head-down tilt bed rest with and without daily centrifugation

Spaceflight associated neuro-ocular syndrome (SANS) is associated with acquired optic disc edema, hyperopia, and posterior globe flattening in some astronauts during long-duration spaceflight possibly due to the headward fluid redistribution in microgravity. The goal of this study was to assess whet...

Descripción completa

Detalles Bibliográficos
Autores principales: Sater, Stuart H., Conley Natividad, Gabryel, Seiner, Akari J., Fu, Audrey Q., Shrestha, Dev, Bershad, Eric M., Marshall-Goebel, Karina, Laurie, Steven S., Macias, Brandon R., Martin, Bryn A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Physiological Society 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9744655/
https://www.ncbi.nlm.nih.gov/pubmed/36326472
http://dx.doi.org/10.1152/japplphysiol.00082.2022
Descripción
Sumario:Spaceflight associated neuro-ocular syndrome (SANS) is associated with acquired optic disc edema, hyperopia, and posterior globe flattening in some astronauts during long-duration spaceflight possibly due to the headward fluid redistribution in microgravity. The goal of this study was to assess whether strict head-down tilt (HDT) bed rest as a spaceflight analog would produce globe flattening and whether centrifugation could prevent these changes. Twenty-four healthy subjects separated into three groups underwent 60 days of strict 6° HDT bed rest: one control group with no countermeasure (n = 8) and two countermeasure groups exposed to 30 min daily of short-arm centrifugation as a means of artificial gravity (AG), either intermittent (iAG, n = 8) or continuous (cAG, n = 8). Magnetic resonance images (MRI) were collected at baseline, HDT-day 14, HDT-day 52, and 3 days after bed rest. An automated method was applied to quantify posterior globe volume displacement compared with baseline scans. On average, subjects showed an increasing degree of globe volume displacement with bed rest duration (means ± SE: 1.41 ± 1.01 mm(3) on HDT14 and 4.04 ± 1.19 mm(3) on HDT52) that persisted post-bed rest (5.51 ± 1.26 mm(3)). Application of 30 min daily AG did not have a significant impact on globe volume displacement (P = 0.42 for cAG and P = 0.93 for iAG compared with control). These results indicate that strict 6° HDT bed rest produced displacement of the posterior globe with a trend of increasing displacement with longer duration that was not prevented by daily 30 min exposure to AG. NEW & NOTEWORTHY Head-down tilt (HDT) bed rest is commonly used as a spaceflight analog for investigating spaceflight associated neuro-ocular syndrome (SANS). Posterior ocular globe flattening has been identified in astronauts with SANS but until now has not been investigated during HDT bed rest. In this study, posterior ocular globe volume displacement was quantified before, during, and after HDT bed rest and countermeasures were tested for their potential to reduce the degree of globe flattening.