Cargando…
Generative Adversarial Networks and Mixture Density Networks-Based Inverse Modeling for Microstructural Materials Design
There are two broad modeling paradigms in scientific applications: forward and inverse. While forward modeling estimates the observations based on known causes, inverse modeling attempts to infer the causes given the observations. Inverse problems are usually more critical as well as difficult in sc...
Autores principales: | Mao, Yuwei, Yang, Zijiang, Jha, Dipendra, Paul, Arindam, Liao, Wei-keng, Choudhary, Alok, Agrawal, Ankit |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9744696/ https://www.ncbi.nlm.nih.gov/pubmed/36530375 http://dx.doi.org/10.1007/s40192-022-00285-0 |
Ejemplares similares
-
ElemNet: Deep Learning the Chemistry of Materials From Only Elemental Composition
por: Jha, Dipendra, et al.
Publicado: (2018) -
Enabling deeper learning on big data for materials informatics applications
por: Jha, Dipendra, et al.
Publicado: (2021) -
Moving closer to experimental level materials property prediction using AI
por: Jha, Dipendra, et al.
Publicado: (2022) -
Enhancing materials property prediction by leveraging computational and experimental data using deep transfer learning
por: Jha, Dipendra, et al.
Publicado: (2019) -
Author Correction: Enhancing materials property prediction by leveraging computational and experimental data using deep transfer learning
por: Jha, Dipendra, et al.
Publicado: (2020)