Cargando…

PSpice modeling of cervical and site-focused vagus nerve ultrasonic stimulation for reduced tumor necrosis factor-α production

Clinical ultrasound is widely used as a diagnostic and therapeutic tool. Recently, it has been used to perform neuromodulation to treat diverse effects, including inflammation reduction through the vagus nerve. Although the mechanism by which ultrasound propagates through tissue for diagnostic purpo...

Descripción completa

Detalles Bibliográficos
Autores principales: Ghorayeb, Sleiman R., Hirsch, Bryan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9744857/
https://www.ncbi.nlm.nih.gov/pubmed/36509814
http://dx.doi.org/10.1038/s41598-022-25944-2
Descripción
Sumario:Clinical ultrasound is widely used as a diagnostic and therapeutic tool. Recently, it has been used to perform neuromodulation to treat diverse effects, including inflammation reduction through the vagus nerve. Although the mechanism by which ultrasound propagates through tissue for diagnostic purposes has been established, there is not a complete understanding of how it interacts with neurons to elicit excitation and inhibit inflammation. This work presents a novel technique based on a well-established electrical engineering tool, PSpice, to model cervical and site-focused vagus nerve ultrasonic stimulation to understand its capability in reducing tumor necrosis factor-α (TNF-α) production in the spleen. Transmission line theory is utilized as the basis for the different tissue layers. The models supported the hypothesis that site-focused stimulation has the advantage to decrease undesired efferent effects that would otherwise occur with cervical stimulation. Two different acoustic pressures, 0.25 and 0.83 MPa, were simulated for theoretical efficacy and safety based on previous experimental work conducted by others. The 0.25 MPa simulation was ideal for neurostimulation and reduction of TNF-α, while 0.83 MPa resulted in much higher intensity levels that will most likely induce additional inflammation.