Cargando…
Predictive modelling of Parkinson’s disease progression based on RNA-Sequence with densely connected deep recurrent neural networks
The advent of recent high throughput sequencing technologies resulted in unexplored big data of genomics and transcriptomics that might help to answer various research questions in Parkinson’s disease (PD) progression. While the literature has revealed various predictive models that use longitudinal...
Autores principales: | Ahmed, Siraj, Komeili, Majid, Park, Jeongwon |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9744878/ https://www.ncbi.nlm.nih.gov/pubmed/36509776 http://dx.doi.org/10.1038/s41598-022-25454-1 |
Ejemplares similares
-
Densely Connected Neural Networks for Nonlinear Regression
por: Jiang, Chao, et al.
Publicado: (2022) -
Deep residual-dense network based on bidirectional recurrent neural network for atrial fibrillation detection
por: Laghari, Asif Ali, et al.
Publicado: (2023) -
Deep and Densely Connected Networks for Classification of Diabetic Retinopathy
por: Riaz, Hamza, et al.
Publicado: (2020) -
Cerebral Micro-Bleeding Detection Based on Densely Connected Neural Network
por: Wang, Shuihua, et al.
Publicado: (2019) -
DCNet: Densely Connected Deep Convolutional Encoder–Decoder Network for Nasopharyngeal Carcinoma Segmentation
por: Li, Yang, et al.
Publicado: (2021)