Cargando…
Efficient cross-validation traversals in feature subset selection
Sparse and robust classification models have the potential for revealing common predictive patterns that not only allow for categorizing objects into classes but also for generating mechanistic hypotheses. Identifying a small and informative subset of features is their main ingredient. However, the...
Autores principales: | Lausser, Ludwig, Szekely, Robin, Schmid, Florian, Maucher, Markus, Kestler, Hans A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9744898/ https://www.ncbi.nlm.nih.gov/pubmed/36509882 http://dx.doi.org/10.1038/s41598-022-25942-4 |
Ejemplares similares
-
Constraining classifiers in molecular analysis: invariance and robustness
por: Lausser, Ludwig, et al.
Publicado: (2020) -
Assessing phenotype order in molecular data
por: Lausser, Ludwig, et al.
Publicado: (2019) -
Efficiency of multi-traversal targets
por: Hereward, Hugh G, et al.
Publicado: (1965) -
Unsupervised domain adaptation for the detection of cardiomegaly in cross-domain chest X-ray images
por: Thiam, Patrick, et al.
Publicado: (2023) -
Semantic Multi-Classifier Systems Identify Predictive Processes in Heart Failure Models across Species
por: Lausser, Ludwig, et al.
Publicado: (2018)