Cargando…
Idarubicin combats abiraterone and enzalutamide resistance in prostate cells via targeting XPA protein
Although second-generation therapies like abiraterone (ABI) and enzalutamide (ENZ) benefit patients with castration-resistant prostate cancer (CRPC), drug resistance frequently occurs, eventually resulting in therapy failure. In this study, we used two libraries, FDA-approved drug library and CRISP/...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9744908/ https://www.ncbi.nlm.nih.gov/pubmed/36509750 http://dx.doi.org/10.1038/s41419-022-05490-5 |
Sumario: | Although second-generation therapies like abiraterone (ABI) and enzalutamide (ENZ) benefit patients with castration-resistant prostate cancer (CRPC), drug resistance frequently occurs, eventually resulting in therapy failure. In this study, we used two libraries, FDA-approved drug library and CRISP/Cas9 knockout (GeCKO) library to screen for drugs that overcome treatment resistance and to identify the potential drug-resistant genes involved in treatment resistance. Our screening results showed that the DNA-damaging agent idarubicin (IDA) overcame abiraterone and enzalutamide resistance in prostate cancer cells. IDA treatment inhibited the DNA repair protein XPA expression in a transcription-independent manner. Consistently, XPA knockout sensitized prostate cancer cells to abiraterone and enzalutamide treatment. In conclusion, IDA combats abiraterone and enzalutamide resistance by reducing XPA protein level in prostate cancer. |
---|