Cargando…
Development and performance evaluation of an artificial intelligence algorithm using cell-free DNA fragment distance for non-invasive prenatal testing (aiD-NIPT)
With advances in next-generation sequencing technology, non-invasive prenatal testing (NIPT) has been widely implemented to detect fetal aneuploidies, including trisomy 21, 18, and 13 (T21, T18, and T13). Most NIPT methods use cell-free DNA (cfDNA) fragment count (FC) in maternal blood. In this stud...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9745024/ https://www.ncbi.nlm.nih.gov/pubmed/36523771 http://dx.doi.org/10.3389/fgene.2022.999587 |
Sumario: | With advances in next-generation sequencing technology, non-invasive prenatal testing (NIPT) has been widely implemented to detect fetal aneuploidies, including trisomy 21, 18, and 13 (T21, T18, and T13). Most NIPT methods use cell-free DNA (cfDNA) fragment count (FC) in maternal blood. In this study, we developed a novel NIPT method using cfDNA fragment distance (FD) and convolutional neural network-based artificial intelligence algorithm (aiD-NIPT). Four types of aiD-NIPT algorithm (mean, median, interquartile range, and its ensemble) were developed using 2,215 samples. In an analysis of 17,678 clinical samples, all algorithms showed >99.40% accuracy for T21/T18/T13, and the ensemble algorithm showed the best performance (sensitivity: 99.07%, positive predictive value (PPV): 88.43%); the FC-based conventional Z-score and normalized chromosomal value showed 98.15% sensitivity, with 40.77% and 36.81% PPV, respectively. In conclusion, FD-based aiD-NIPT was successfully developed, and it showed better performance than FC-based NIPT methods. |
---|