Cargando…
Comparison of machine learning and deep learning-based methods for locomotion mode recognition using a single inertial measurement unit
Locomotion mode recognition provides the prosthesis control with the information on when to switch between different walking modes, whereas the gait phase detection indicates where we are in the gait cycle. But powered prostheses often implement a different control strategy for each locomotion mode...
Autores principales: | Vu, Huong Thi Thu, Cao, Hoang-Long, Dong, Dianbiao, Verstraten, Tom, Geeroms, Joost, Vanderborght, Bram |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9745042/ https://www.ncbi.nlm.nih.gov/pubmed/36524219 http://dx.doi.org/10.3389/fnbot.2022.923164 |
Ejemplares similares
-
A Review of Gait Phase Detection Algorithms for Lower Limb Prostheses
por: Vu, Huong Thi Thu, et al.
Publicado: (2020) -
Locomotion Mode Recognition with Inertial Signals for Hip Joint Exoskeleton
por: Du, Gang, et al.
Publicado: (2021) -
ED-FNN: A New Deep Learning Algorithm to Detect Percentage of the Gait Cycle for Powered Prostheses
por: Vu, Huong Thi Thu, et al.
Publicado: (2018) -
Improved Motion Classification With an Integrated Multimodal Exoskeleton Interface
por: Langlois, Kevin, et al.
Publicado: (2021) -
VUB-CYBERLEGs CYBATHLON 2016 Beta-Prosthesis: case study in control of an active two degree of freedom transfemoral prosthesis
por: Flynn, Louis L., et al.
Publicado: (2018)