Cargando…

Skeletal muscle metabolism and contraction performance regulation by teneurin C-terminal-associated peptide-1

Skeletal muscle regulation is responsible for voluntary muscular movement in vertebrates. The genes of two essential proteins, teneurins and latrophilins (LPHN), evolving in ancestors of multicellular animals form a ligand-receptor pair, and are now shown to be required for skeletal muscle function....

Descripción completa

Detalles Bibliográficos
Autores principales: Hogg, David W., Reid, Andrea L., Dodsworth, Thomas L., Chen, Yani, Reid, Ross M., Xu, Mei, Husic, Mia, Biga, Peggy R., Slee, Andrew, Buck, Leslie T., Barsyte-Lovejoy, Dalia, Locke, Marius, Lovejoy, David A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9745124/
https://www.ncbi.nlm.nih.gov/pubmed/36523555
http://dx.doi.org/10.3389/fphys.2022.1031264
_version_ 1784849076754317312
author Hogg, David W.
Reid, Andrea L.
Dodsworth, Thomas L.
Chen, Yani
Reid, Ross M.
Xu, Mei
Husic, Mia
Biga, Peggy R.
Slee, Andrew
Buck, Leslie T.
Barsyte-Lovejoy, Dalia
Locke, Marius
Lovejoy, David A.
author_facet Hogg, David W.
Reid, Andrea L.
Dodsworth, Thomas L.
Chen, Yani
Reid, Ross M.
Xu, Mei
Husic, Mia
Biga, Peggy R.
Slee, Andrew
Buck, Leslie T.
Barsyte-Lovejoy, Dalia
Locke, Marius
Lovejoy, David A.
author_sort Hogg, David W.
collection PubMed
description Skeletal muscle regulation is responsible for voluntary muscular movement in vertebrates. The genes of two essential proteins, teneurins and latrophilins (LPHN), evolving in ancestors of multicellular animals form a ligand-receptor pair, and are now shown to be required for skeletal muscle function. Teneurins possess a bioactive peptide, termed the teneurin C-terminal associated peptide (TCAP) that interacts with the LPHNs to regulate skeletal muscle contractility strength and fatigue by an insulin-independent glucose importation mechanism in rats. CRISPR-based knockouts and siRNA-associated knockdowns of LPHN-1 and-3 in the C2C12 mouse skeletal cell line shows that TCAP stimulates an LPHN-dependent cytosolic Ca(2+) signal transduction cascade to increase energy metabolism and enhance skeletal muscle function via increases in type-1 oxidative fiber formation and reduce the fatigue response. Thus, the teneurin/TCAP-LPHN system is presented as a novel mechanism that regulates the energy requirements and performance of skeletal muscle.
format Online
Article
Text
id pubmed-9745124
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-97451242022-12-14 Skeletal muscle metabolism and contraction performance regulation by teneurin C-terminal-associated peptide-1 Hogg, David W. Reid, Andrea L. Dodsworth, Thomas L. Chen, Yani Reid, Ross M. Xu, Mei Husic, Mia Biga, Peggy R. Slee, Andrew Buck, Leslie T. Barsyte-Lovejoy, Dalia Locke, Marius Lovejoy, David A. Front Physiol Physiology Skeletal muscle regulation is responsible for voluntary muscular movement in vertebrates. The genes of two essential proteins, teneurins and latrophilins (LPHN), evolving in ancestors of multicellular animals form a ligand-receptor pair, and are now shown to be required for skeletal muscle function. Teneurins possess a bioactive peptide, termed the teneurin C-terminal associated peptide (TCAP) that interacts with the LPHNs to regulate skeletal muscle contractility strength and fatigue by an insulin-independent glucose importation mechanism in rats. CRISPR-based knockouts and siRNA-associated knockdowns of LPHN-1 and-3 in the C2C12 mouse skeletal cell line shows that TCAP stimulates an LPHN-dependent cytosolic Ca(2+) signal transduction cascade to increase energy metabolism and enhance skeletal muscle function via increases in type-1 oxidative fiber formation and reduce the fatigue response. Thus, the teneurin/TCAP-LPHN system is presented as a novel mechanism that regulates the energy requirements and performance of skeletal muscle. Frontiers Media S.A. 2022-11-29 /pmc/articles/PMC9745124/ /pubmed/36523555 http://dx.doi.org/10.3389/fphys.2022.1031264 Text en Copyright © 2022 Hogg, Reid, Dodsworth, Chen, Reid, Xu, Husic, Biga, Slee, Buck, Barsyte-Lovejoy, Locke and Lovejoy. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
spellingShingle Physiology
Hogg, David W.
Reid, Andrea L.
Dodsworth, Thomas L.
Chen, Yani
Reid, Ross M.
Xu, Mei
Husic, Mia
Biga, Peggy R.
Slee, Andrew
Buck, Leslie T.
Barsyte-Lovejoy, Dalia
Locke, Marius
Lovejoy, David A.
Skeletal muscle metabolism and contraction performance regulation by teneurin C-terminal-associated peptide-1
title Skeletal muscle metabolism and contraction performance regulation by teneurin C-terminal-associated peptide-1
title_full Skeletal muscle metabolism and contraction performance regulation by teneurin C-terminal-associated peptide-1
title_fullStr Skeletal muscle metabolism and contraction performance regulation by teneurin C-terminal-associated peptide-1
title_full_unstemmed Skeletal muscle metabolism and contraction performance regulation by teneurin C-terminal-associated peptide-1
title_short Skeletal muscle metabolism and contraction performance regulation by teneurin C-terminal-associated peptide-1
title_sort skeletal muscle metabolism and contraction performance regulation by teneurin c-terminal-associated peptide-1
topic Physiology
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9745124/
https://www.ncbi.nlm.nih.gov/pubmed/36523555
http://dx.doi.org/10.3389/fphys.2022.1031264
work_keys_str_mv AT hoggdavidw skeletalmusclemetabolismandcontractionperformanceregulationbyteneurincterminalassociatedpeptide1
AT reidandreal skeletalmusclemetabolismandcontractionperformanceregulationbyteneurincterminalassociatedpeptide1
AT dodsworththomasl skeletalmusclemetabolismandcontractionperformanceregulationbyteneurincterminalassociatedpeptide1
AT chenyani skeletalmusclemetabolismandcontractionperformanceregulationbyteneurincterminalassociatedpeptide1
AT reidrossm skeletalmusclemetabolismandcontractionperformanceregulationbyteneurincterminalassociatedpeptide1
AT xumei skeletalmusclemetabolismandcontractionperformanceregulationbyteneurincterminalassociatedpeptide1
AT husicmia skeletalmusclemetabolismandcontractionperformanceregulationbyteneurincterminalassociatedpeptide1
AT bigapeggyr skeletalmusclemetabolismandcontractionperformanceregulationbyteneurincterminalassociatedpeptide1
AT sleeandrew skeletalmusclemetabolismandcontractionperformanceregulationbyteneurincterminalassociatedpeptide1
AT bucklesliet skeletalmusclemetabolismandcontractionperformanceregulationbyteneurincterminalassociatedpeptide1
AT barsytelovejoydalia skeletalmusclemetabolismandcontractionperformanceregulationbyteneurincterminalassociatedpeptide1
AT lockemarius skeletalmusclemetabolismandcontractionperformanceregulationbyteneurincterminalassociatedpeptide1
AT lovejoydavida skeletalmusclemetabolismandcontractionperformanceregulationbyteneurincterminalassociatedpeptide1