Cargando…
Feasibility of a Reinforcement Learning–Enabled Digital Health Intervention to Promote Mammograms: Retrospective, Single-Arm, Observational Study
BACKGROUND: Preventive screenings such as mammograms promote health and detect disease. However, mammogram attendance lags clinical guidelines, with roughly one-quarter of women not completing their recommended mammograms. A scalable digital health intervention leveraging behavioral science and rein...
Autores principales: | Bucher, Amy, Blazek, E Susanne, West, Ashley B |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9745647/ https://www.ncbi.nlm.nih.gov/pubmed/36441579 http://dx.doi.org/10.2196/42343 |
Ejemplares similares
-
Tensor-Based Learning for Detecting Abnormalities on Digital Mammograms
por: Tzortzis, Ioannis N., et al.
Publicado: (2022) -
Fuzzy technique for microcalcifications clustering in digital mammograms
por: Vivona, Letizia, et al.
Publicado: (2014) -
Bayesian Classifier with Simplified Learning Phase for Detecting Microcalcifications in Digital Mammograms
por: Zyout, Imad, et al.
Publicado: (2009) -
Performance in digital mammography with and without film prior mammograms
por: Taylor-Phillips, S, et al.
Publicado: (2009) -
Generating Full-Field Digital Mammogram From Digitized Screen-Film Mammogram for Breast Cancer Screening With High-Resolution Generative Adversarial Network
por: Zhou, Yuanpin, et al.
Publicado: (2022)