Cargando…
Machine learning-based identification of risk-factor signatures for undiagnosed atrial fibrillation in primary prevention and post-stroke in clinical practice
AIMS: Atrial fibrillation (AF) carries a substantial risk of ischemic stroke and other complications, and estimates suggest that over a third of cases remain undiagnosed. AF detection is particularly pressing in stroke survivors. To tailor AF screening efforts, we explored German health claims data...
Autores principales: | Schnabel, Renate B, Witt, Henning, Walker, Jochen, Ludwig, Marion, Geelhoed, Bastian, Kossack, Nils, Schild, Marie, Miller, Robert, Kirchhof, Paulus |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9745664/ https://www.ncbi.nlm.nih.gov/pubmed/35436783 http://dx.doi.org/10.1093/ehjqcco/qcac013 |
Ejemplares similares
-
Genetics of atrial fibrillation—practical applications for clinical management: if not now, when and how?
por: Kany, Shinwan, et al.
Publicado: (2021) -
Integrated care of patients with atrial fibrillation: the 2016 ESC atrial fibrillation guidelines
por: Kirchhof, Paulus
Publicado: (2017) -
Symptom Burden of Atrial Fibrillation and Its Relation to Interventions and Outcome in Europe
por: Schnabel, Renate B., et al.
Publicado: (2018) -
Eligibility for early rhythm control in patients with atrial fibrillation in the UK Biobank
por: Kany, Shinwan, et al.
Publicado: (2022) -
Performance of an electronic health record-based predictive model to identify patients with atrial fibrillation across countries
por: Mokgokong, Ruth, et al.
Publicado: (2022)