Cargando…
De novo prediction of RNA–protein interactions with graph neural networks
RNA-binding proteins (RBPs) are key co- and post-transcriptional regulators of gene expression, playing a crucial role in many biological processes. Experimental methods like CLIP-seq have enabled the identification of transcriptome-wide RNA–protein interactions for select proteins; however, the tim...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9745830/ https://www.ncbi.nlm.nih.gov/pubmed/36008134 http://dx.doi.org/10.1261/rna.079365.122 |
_version_ | 1784849234023940096 |
---|---|
author | Arora, Viplove Sanguinetti, Guido |
author_facet | Arora, Viplove Sanguinetti, Guido |
author_sort | Arora, Viplove |
collection | PubMed |
description | RNA-binding proteins (RBPs) are key co- and post-transcriptional regulators of gene expression, playing a crucial role in many biological processes. Experimental methods like CLIP-seq have enabled the identification of transcriptome-wide RNA–protein interactions for select proteins; however, the time- and resource-intensive nature of these technologies call for the development of computational methods to complement their predictions. Here, we leverage recent, large-scale CLIP-seq experiments to construct a de novo predictor of RNA–protein interactions based on graph neural networks (GNN). We show that the GNN method allows us not only to predict missing links in an RNA–protein network, but to predict the entire complement of targets of previously unassayed proteins, and even to reconstruct the entire network of RNA–protein interactions in different conditions based on minimal information. Our results demonstrate the potential of modern machine learning methods to extract useful information on post-transcriptional regulation from large data sets. |
format | Online Article Text |
id | pubmed-9745830 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Cold Spring Harbor Laboratory Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-97458302023-11-01 De novo prediction of RNA–protein interactions with graph neural networks Arora, Viplove Sanguinetti, Guido RNA Bioinformatics RNA-binding proteins (RBPs) are key co- and post-transcriptional regulators of gene expression, playing a crucial role in many biological processes. Experimental methods like CLIP-seq have enabled the identification of transcriptome-wide RNA–protein interactions for select proteins; however, the time- and resource-intensive nature of these technologies call for the development of computational methods to complement their predictions. Here, we leverage recent, large-scale CLIP-seq experiments to construct a de novo predictor of RNA–protein interactions based on graph neural networks (GNN). We show that the GNN method allows us not only to predict missing links in an RNA–protein network, but to predict the entire complement of targets of previously unassayed proteins, and even to reconstruct the entire network of RNA–protein interactions in different conditions based on minimal information. Our results demonstrate the potential of modern machine learning methods to extract useful information on post-transcriptional regulation from large data sets. Cold Spring Harbor Laboratory Press 2022-11 /pmc/articles/PMC9745830/ /pubmed/36008134 http://dx.doi.org/10.1261/rna.079365.122 Text en © 2022 Arora and Sanguinetti; Published by Cold Spring Harbor Laboratory Press for the RNA Society https://creativecommons.org/licenses/by-nc/4.0/This article is distributed exclusively by the RNA Society for the first 12 months after the full-issue publication date (see http://rnajournal.cshlp.org/site/misc/terms.xhtml). After 12 months, it is available under a Creative Commons License (Attribution-NonCommercial 4.0 International), as described at http://creativecommons.org/licenses/by-nc/4.0/ (https://creativecommons.org/licenses/by-nc/4.0/) . |
spellingShingle | Bioinformatics Arora, Viplove Sanguinetti, Guido De novo prediction of RNA–protein interactions with graph neural networks |
title | De novo prediction of RNA–protein interactions with graph neural networks |
title_full | De novo prediction of RNA–protein interactions with graph neural networks |
title_fullStr | De novo prediction of RNA–protein interactions with graph neural networks |
title_full_unstemmed | De novo prediction of RNA–protein interactions with graph neural networks |
title_short | De novo prediction of RNA–protein interactions with graph neural networks |
title_sort | de novo prediction of rna–protein interactions with graph neural networks |
topic | Bioinformatics |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9745830/ https://www.ncbi.nlm.nih.gov/pubmed/36008134 http://dx.doi.org/10.1261/rna.079365.122 |
work_keys_str_mv | AT aroraviplove denovopredictionofrnaproteininteractionswithgraphneuralnetworks AT sanguinettiguido denovopredictionofrnaproteininteractionswithgraphneuralnetworks |