Cargando…
De novo prediction of RNA–protein interactions with graph neural networks
RNA-binding proteins (RBPs) are key co- and post-transcriptional regulators of gene expression, playing a crucial role in many biological processes. Experimental methods like CLIP-seq have enabled the identification of transcriptome-wide RNA–protein interactions for select proteins; however, the tim...
Autores principales: | Arora, Viplove, Sanguinetti, Guido |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9745830/ https://www.ncbi.nlm.nih.gov/pubmed/36008134 http://dx.doi.org/10.1261/rna.079365.122 |
Ejemplares similares
-
DeepNC: a framework for drug-target interaction prediction with graph neural networks
por: Tran, Huu Ngoc Tran, et al.
Publicado: (2022) -
Quality Assessment of Protein Docking Models Based on Graph Neural Network
por: Han, Ye, et al.
Publicado: (2021) -
Structure-based neural network protein–carbohydrate interaction predictions at the residue level
por: Canner, Samuel W., et al.
Publicado: (2023) -
Plant data visualisation using network graphs
por: Mohamad-Matrol, Afrina Adlyna, et al.
Publicado: (2018) -
Editorial: Graph representation learning in biological network
por: Roy, Swarup, et al.
Publicado: (2023)