Cargando…
Multi-objective automatic analysis of lung ultrasound data from COVID-19 patients by means of deep learning and decision trees
COVID-19 raised the need for automatic medical diagnosis, to increase the physicians’ efficiency in managing the pandemic. Among all the techniques for evaluating the status of the lungs of a patient with COVID-19, lung ultrasound (LUS) offers several advantages: portability, cost-effectiveness, saf...
Autores principales: | Custode, Leonardo Lucio, Mento, Federico, Tursi, Francesco, Smargiassi, Andrea, Inchingolo, Riccardo, Perrone, Tiziano, Demi, Libertario, Iacca, Giovanni |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier B.V.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9746028/ https://www.ncbi.nlm.nih.gov/pubmed/36532127 http://dx.doi.org/10.1016/j.asoc.2022.109926 |
Ejemplares similares
-
Benchmark methodological approach for the application of artificial intelligence to lung ultrasound data from COVID-19 patients: From frame to prognostic-level
por: Khan, Umair, et al.
Publicado: (2023) -
Limiting the areas inspected by lung ultrasound leads to an underestimation of COVID-19 patients’ condition
por: Mento, Federico, et al.
Publicado: (2021) -
State of the Art in Lung Ultrasound, Shifting from Qualitative to Quantitative Analyses
por: Mento, Federico, et al.
Publicado: (2022) -
Human‐to‐AI Interrater Agreement for Lung Ultrasound Scoring in COVID‐19 Patients
por: Fatima, Noreen, et al.
Publicado: (2022) -
Lung Ultrasound in COVID‐19 and Post‐COVID‐19 Patients, an Evidence‐Based Approach
por: Demi, Libertario, et al.
Publicado: (2021)