Cargando…

CT and CEA‐based machine learning model for predicting malignant pulmonary nodules

Computed tomography (CT), an efficient radiological technology, is used to detect lung cancer in the clinic. Carcinoembryonic antigen (CEA), a common tumor biomarker, is applied in the detection of various tumors. To highlight the advantages of two‐dimensional techniques and assist clinicians in opt...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Man, Zhou, Zhigang, Liu, Fenghui, Wang, Meng, Wang, Yulin, Gao, Mengyu, Sun, Huifang, Zhang, Xue, Yang, Ting, Ji, Longtao, Li, Jiaqi, Si, Qiufang, Dai, Liping, Ouyang, Songyun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9746043/
https://www.ncbi.nlm.nih.gov/pubmed/36056603
http://dx.doi.org/10.1111/cas.15561
Descripción
Sumario:Computed tomography (CT), an efficient radiological technology, is used to detect lung cancer in the clinic. Carcinoembryonic antigen (CEA), a common tumor biomarker, is applied in the detection of various tumors. To highlight the advantages of two‐dimensional techniques and assist clinicians in optimizing lung cancer diagnostic schemes, we established a favorable model combining CT and CEA. In the study, univariate analysis was performed to screen independent predictors in a training cohort of 271 patients with malignant pulmonary nodules (MPNs) and 92 with benign pulmonary nodules (BPNs). Six machine learning–based models involving five CT predictors (mediastinal lymph node enlargement, lobulation, vascular notch sign, spiculation, and nodule number) and lnCEA were constructed and validated in an independent cohort of 129 participants (92 MPNs and 37 BPNs) by SPSS Modeler. A nomogram and the Delong test were generated by R software. Finally, the model established by logistic regression had highest diagnostic efficiency (area under the curve [AUC] = 0.912). Moreover, the diagnostic ability of the logistic model in the validation cohort (AUC = 0.882, 80.4% sensitivity, 75.7% specificity) was higher than that of the Peking University model (AUC = 0.712, 68.5% sensitivity, 70.3% specificity) and the Mayo model (AUC = 0.745, 62.0% sensitivity, 75.7% specificity). Interestingly, for the participants with intermediate (10‐30 mm) and CEA‐negative nodule, the model reached an AUC of 0.835 (72.3% sensitivity, 83.3% specificity). The AUC for the early lung cancer was as high as 0.822 with 67.3% sensitivity and 78.9% specificity. As a conclusion, this promising model presents a new diagnostic strategy for the clinic to distinguish MPNs from BPNs.