Cargando…

Effects of Malate Ringer's solution on myocardial injury in sepsis and enforcement effects of TPP@PAMAM-MR

BACKGROUND: Myocardial dysfunction played a vital role in organ damage after sepsis. Fluid resuscitation was the essential treatment in which Lactate Ringer's solution (LR) was commonly used. Since LR easily led to hyperlactatemia, its resuscitation effect was limited. Malate Ringer's solu...

Descripción completa

Detalles Bibliográficos
Autores principales: Tan, Lei, She, Han, Zheng, Jie, Peng, Xiaoyong, Guo, Ningke, Zhang, Bindan, Sun, Yue, Ma, Chunhua, Xu, Shenglian, Bao, Daiqin, Zhou, Yuanqun, Li, Qinghui, Mao, Qingxiang, Liu, Liangming, Hu, Yi, Li, Tao
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9746071/
https://www.ncbi.nlm.nih.gov/pubmed/36514103
http://dx.doi.org/10.1186/s12967-022-03811-y
Descripción
Sumario:BACKGROUND: Myocardial dysfunction played a vital role in organ damage after sepsis. Fluid resuscitation was the essential treatment in which Lactate Ringer's solution (LR) was commonly used. Since LR easily led to hyperlactatemia, its resuscitation effect was limited. Malate Ringer's solution (MR) was a new resuscitation crystal liquid. Whether MR had a protective effect on myocardial injury in sepsis and the relevant mechanism need to be studied. METHODS: The cecal ligation and puncture (CLP) inducing septic model and lipopolysaccharide (LPS) stimulating cardiomyocytes were used, and the cardiac function, the morphology and function of mitochondria were observed. The protective mechanism of MR on myocardial injury was explored by proteomics. Then the effects of TPP@PAMAM-MR, which consisted of the mitochondria- targeting polymer embodied malic acid, was further observed. RESULTS: Compared with LR, MR resuscitation significantly prolonged survival time, improved the cardiac function, alleviated the damages of liver, kidney and lung following sepsis in rats. The proteomics of myocardial tissue showed that differently expressed proteins between MR and LR infusion involved oxidative phosphorylation, apoptosis. Further study found that MR decreased ROS, improved the mitochondrial morphology and function, and ultimately enhanced mitochondrial respiration and promoted ATP production. Moreover, MR infusion decreased the expression of apoptosis-related proteins and increased the expression of anti-apoptotic proteins. TPP@PAMAM@MA was a polymer formed by wrapping l-malic acid with poly amido amine (PAMAM) modified triphenylphosphine material. TPP@PAMAM-MR (TPP-MR), which was synthesized by replacing the l-malic acid of MR with TPP@PAMAM@MA, was more efficient in targeting myocardial mitochondria and was superior to MR in protecting the sepsis-inducing myocardial injury. CONCLUSION: MR was suitable for protecting myocardial injury after sepsis. The mechanism was related to MR improving the function and morphology of cardiomyocyte mitochondria and inhibiting cardiomyocyte apoptosis. The protective effect of TPP-MR was superior to MR. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12967-022-03811-y.