Cargando…

Structural variant analysis of a cancer reference cell line sample using multiple sequencing technologies

BACKGROUND: The cancer genome is commonly altered with thousands of structural rearrangements including insertions, deletions, translocation, inversions, duplications, and copy number variations. Thus, structural variant (SV) characterization plays a paramount role in cancer target identification, o...

Descripción completa

Detalles Bibliográficos
Autores principales: Talsania, Keyur, Shen, Tsai-wei, Chen, Xiongfong, Jaeger, Erich, Li, Zhipan, Chen, Zhong, Chen, Wanqiu, Tran, Bao, Kusko, Rebecca, Wang, Limin, Pang, Andy Wing Chun, Yang, Zhaowei, Choudhari, Sulbha, Colgan, Michael, Fang, Li Tai, Carroll, Andrew, Shetty, Jyoti, Kriga, Yuliya, German, Oksana, Smirnova, Tatyana, Liu, Tiantain, Li, Jing, Kellman, Ben, Hong, Karl, Hastie, Alex R., Natarajan, Aparna, Moshrefi, Ali, Granat, Anastasiya, Truong, Tiffany, Bombardi, Robin, Mankinen, Veronnica, Meerzaman, Daoud, Mason, Christopher E., Collins, Jack, Stahlberg, Eric, Xiao, Chunlin, Wang, Charles, Xiao, Wenming, Zhao, Yongmei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9746098/
https://www.ncbi.nlm.nih.gov/pubmed/36514120
http://dx.doi.org/10.1186/s13059-022-02816-6
_version_ 1784849291244732416
author Talsania, Keyur
Shen, Tsai-wei
Chen, Xiongfong
Jaeger, Erich
Li, Zhipan
Chen, Zhong
Chen, Wanqiu
Tran, Bao
Kusko, Rebecca
Wang, Limin
Pang, Andy Wing Chun
Yang, Zhaowei
Choudhari, Sulbha
Colgan, Michael
Fang, Li Tai
Carroll, Andrew
Shetty, Jyoti
Kriga, Yuliya
German, Oksana
Smirnova, Tatyana
Liu, Tiantain
Li, Jing
Kellman, Ben
Hong, Karl
Hastie, Alex R.
Natarajan, Aparna
Moshrefi, Ali
Granat, Anastasiya
Truong, Tiffany
Bombardi, Robin
Mankinen, Veronnica
Meerzaman, Daoud
Mason, Christopher E.
Collins, Jack
Stahlberg, Eric
Xiao, Chunlin
Wang, Charles
Xiao, Wenming
Zhao, Yongmei
author_facet Talsania, Keyur
Shen, Tsai-wei
Chen, Xiongfong
Jaeger, Erich
Li, Zhipan
Chen, Zhong
Chen, Wanqiu
Tran, Bao
Kusko, Rebecca
Wang, Limin
Pang, Andy Wing Chun
Yang, Zhaowei
Choudhari, Sulbha
Colgan, Michael
Fang, Li Tai
Carroll, Andrew
Shetty, Jyoti
Kriga, Yuliya
German, Oksana
Smirnova, Tatyana
Liu, Tiantain
Li, Jing
Kellman, Ben
Hong, Karl
Hastie, Alex R.
Natarajan, Aparna
Moshrefi, Ali
Granat, Anastasiya
Truong, Tiffany
Bombardi, Robin
Mankinen, Veronnica
Meerzaman, Daoud
Mason, Christopher E.
Collins, Jack
Stahlberg, Eric
Xiao, Chunlin
Wang, Charles
Xiao, Wenming
Zhao, Yongmei
author_sort Talsania, Keyur
collection PubMed
description BACKGROUND: The cancer genome is commonly altered with thousands of structural rearrangements including insertions, deletions, translocation, inversions, duplications, and copy number variations. Thus, structural variant (SV) characterization plays a paramount role in cancer target identification, oncology diagnostics, and personalized medicine. As part of the SEQC2 Consortium effort, the present study established and evaluated a consensus SV call set using a breast cancer reference cell line and matched normal control derived from the same donor, which were used in our companion benchmarking studies as reference samples. RESULTS: We systematically investigated somatic SVs in the reference cancer cell line by comparing to a matched normal cell line using multiple NGS platforms including Illumina short-read, 10X Genomics linked reads, PacBio long reads, Oxford Nanopore long reads, and high-throughput chromosome conformation capture (Hi-C). We established a consensus SV call set of a total of 1788 SVs including 717 deletions, 230 duplications, 551 insertions, 133 inversions, 146 translocations, and 11 breakends for the reference cancer cell line. To independently evaluate and cross-validate the accuracy of our consensus SV call set, we used orthogonal methods including PCR-based validation, Affymetrix arrays, Bionano optical mapping, and identification of fusion genes detected from RNA-seq. We evaluated the strengths and weaknesses of each NGS technology for SV determination, and our findings provide an actionable guide to improve cancer genome SV detection sensitivity and accuracy. CONCLUSIONS: A high-confidence consensus SV call set was established for the reference cancer cell line. A large subset of the variants identified was validated by multiple orthogonal methods. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13059-022-02816-6.
format Online
Article
Text
id pubmed-9746098
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-97460982022-12-14 Structural variant analysis of a cancer reference cell line sample using multiple sequencing technologies Talsania, Keyur Shen, Tsai-wei Chen, Xiongfong Jaeger, Erich Li, Zhipan Chen, Zhong Chen, Wanqiu Tran, Bao Kusko, Rebecca Wang, Limin Pang, Andy Wing Chun Yang, Zhaowei Choudhari, Sulbha Colgan, Michael Fang, Li Tai Carroll, Andrew Shetty, Jyoti Kriga, Yuliya German, Oksana Smirnova, Tatyana Liu, Tiantain Li, Jing Kellman, Ben Hong, Karl Hastie, Alex R. Natarajan, Aparna Moshrefi, Ali Granat, Anastasiya Truong, Tiffany Bombardi, Robin Mankinen, Veronnica Meerzaman, Daoud Mason, Christopher E. Collins, Jack Stahlberg, Eric Xiao, Chunlin Wang, Charles Xiao, Wenming Zhao, Yongmei Genome Biol Research BACKGROUND: The cancer genome is commonly altered with thousands of structural rearrangements including insertions, deletions, translocation, inversions, duplications, and copy number variations. Thus, structural variant (SV) characterization plays a paramount role in cancer target identification, oncology diagnostics, and personalized medicine. As part of the SEQC2 Consortium effort, the present study established and evaluated a consensus SV call set using a breast cancer reference cell line and matched normal control derived from the same donor, which were used in our companion benchmarking studies as reference samples. RESULTS: We systematically investigated somatic SVs in the reference cancer cell line by comparing to a matched normal cell line using multiple NGS platforms including Illumina short-read, 10X Genomics linked reads, PacBio long reads, Oxford Nanopore long reads, and high-throughput chromosome conformation capture (Hi-C). We established a consensus SV call set of a total of 1788 SVs including 717 deletions, 230 duplications, 551 insertions, 133 inversions, 146 translocations, and 11 breakends for the reference cancer cell line. To independently evaluate and cross-validate the accuracy of our consensus SV call set, we used orthogonal methods including PCR-based validation, Affymetrix arrays, Bionano optical mapping, and identification of fusion genes detected from RNA-seq. We evaluated the strengths and weaknesses of each NGS technology for SV determination, and our findings provide an actionable guide to improve cancer genome SV detection sensitivity and accuracy. CONCLUSIONS: A high-confidence consensus SV call set was established for the reference cancer cell line. A large subset of the variants identified was validated by multiple orthogonal methods. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13059-022-02816-6. BioMed Central 2022-12-13 /pmc/articles/PMC9746098/ /pubmed/36514120 http://dx.doi.org/10.1186/s13059-022-02816-6 Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/ (https://creativecommons.org/publicdomain/zero/1.0/) ) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
spellingShingle Research
Talsania, Keyur
Shen, Tsai-wei
Chen, Xiongfong
Jaeger, Erich
Li, Zhipan
Chen, Zhong
Chen, Wanqiu
Tran, Bao
Kusko, Rebecca
Wang, Limin
Pang, Andy Wing Chun
Yang, Zhaowei
Choudhari, Sulbha
Colgan, Michael
Fang, Li Tai
Carroll, Andrew
Shetty, Jyoti
Kriga, Yuliya
German, Oksana
Smirnova, Tatyana
Liu, Tiantain
Li, Jing
Kellman, Ben
Hong, Karl
Hastie, Alex R.
Natarajan, Aparna
Moshrefi, Ali
Granat, Anastasiya
Truong, Tiffany
Bombardi, Robin
Mankinen, Veronnica
Meerzaman, Daoud
Mason, Christopher E.
Collins, Jack
Stahlberg, Eric
Xiao, Chunlin
Wang, Charles
Xiao, Wenming
Zhao, Yongmei
Structural variant analysis of a cancer reference cell line sample using multiple sequencing technologies
title Structural variant analysis of a cancer reference cell line sample using multiple sequencing technologies
title_full Structural variant analysis of a cancer reference cell line sample using multiple sequencing technologies
title_fullStr Structural variant analysis of a cancer reference cell line sample using multiple sequencing technologies
title_full_unstemmed Structural variant analysis of a cancer reference cell line sample using multiple sequencing technologies
title_short Structural variant analysis of a cancer reference cell line sample using multiple sequencing technologies
title_sort structural variant analysis of a cancer reference cell line sample using multiple sequencing technologies
topic Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9746098/
https://www.ncbi.nlm.nih.gov/pubmed/36514120
http://dx.doi.org/10.1186/s13059-022-02816-6
work_keys_str_mv AT talsaniakeyur structuralvariantanalysisofacancerreferencecelllinesampleusingmultiplesequencingtechnologies
AT shentsaiwei structuralvariantanalysisofacancerreferencecelllinesampleusingmultiplesequencingtechnologies
AT chenxiongfong structuralvariantanalysisofacancerreferencecelllinesampleusingmultiplesequencingtechnologies
AT jaegererich structuralvariantanalysisofacancerreferencecelllinesampleusingmultiplesequencingtechnologies
AT lizhipan structuralvariantanalysisofacancerreferencecelllinesampleusingmultiplesequencingtechnologies
AT chenzhong structuralvariantanalysisofacancerreferencecelllinesampleusingmultiplesequencingtechnologies
AT chenwanqiu structuralvariantanalysisofacancerreferencecelllinesampleusingmultiplesequencingtechnologies
AT tranbao structuralvariantanalysisofacancerreferencecelllinesampleusingmultiplesequencingtechnologies
AT kuskorebecca structuralvariantanalysisofacancerreferencecelllinesampleusingmultiplesequencingtechnologies
AT wanglimin structuralvariantanalysisofacancerreferencecelllinesampleusingmultiplesequencingtechnologies
AT pangandywingchun structuralvariantanalysisofacancerreferencecelllinesampleusingmultiplesequencingtechnologies
AT yangzhaowei structuralvariantanalysisofacancerreferencecelllinesampleusingmultiplesequencingtechnologies
AT choudharisulbha structuralvariantanalysisofacancerreferencecelllinesampleusingmultiplesequencingtechnologies
AT colganmichael structuralvariantanalysisofacancerreferencecelllinesampleusingmultiplesequencingtechnologies
AT fanglitai structuralvariantanalysisofacancerreferencecelllinesampleusingmultiplesequencingtechnologies
AT carrollandrew structuralvariantanalysisofacancerreferencecelllinesampleusingmultiplesequencingtechnologies
AT shettyjyoti structuralvariantanalysisofacancerreferencecelllinesampleusingmultiplesequencingtechnologies
AT krigayuliya structuralvariantanalysisofacancerreferencecelllinesampleusingmultiplesequencingtechnologies
AT germanoksana structuralvariantanalysisofacancerreferencecelllinesampleusingmultiplesequencingtechnologies
AT smirnovatatyana structuralvariantanalysisofacancerreferencecelllinesampleusingmultiplesequencingtechnologies
AT liutiantain structuralvariantanalysisofacancerreferencecelllinesampleusingmultiplesequencingtechnologies
AT lijing structuralvariantanalysisofacancerreferencecelllinesampleusingmultiplesequencingtechnologies
AT kellmanben structuralvariantanalysisofacancerreferencecelllinesampleusingmultiplesequencingtechnologies
AT hongkarl structuralvariantanalysisofacancerreferencecelllinesampleusingmultiplesequencingtechnologies
AT hastiealexr structuralvariantanalysisofacancerreferencecelllinesampleusingmultiplesequencingtechnologies
AT natarajanaparna structuralvariantanalysisofacancerreferencecelllinesampleusingmultiplesequencingtechnologies
AT moshrefiali structuralvariantanalysisofacancerreferencecelllinesampleusingmultiplesequencingtechnologies
AT granatanastasiya structuralvariantanalysisofacancerreferencecelllinesampleusingmultiplesequencingtechnologies
AT truongtiffany structuralvariantanalysisofacancerreferencecelllinesampleusingmultiplesequencingtechnologies
AT bombardirobin structuralvariantanalysisofacancerreferencecelllinesampleusingmultiplesequencingtechnologies
AT mankinenveronnica structuralvariantanalysisofacancerreferencecelllinesampleusingmultiplesequencingtechnologies
AT meerzamandaoud structuralvariantanalysisofacancerreferencecelllinesampleusingmultiplesequencingtechnologies
AT masonchristophere structuralvariantanalysisofacancerreferencecelllinesampleusingmultiplesequencingtechnologies
AT collinsjack structuralvariantanalysisofacancerreferencecelllinesampleusingmultiplesequencingtechnologies
AT stahlbergeric structuralvariantanalysisofacancerreferencecelllinesampleusingmultiplesequencingtechnologies
AT xiaochunlin structuralvariantanalysisofacancerreferencecelllinesampleusingmultiplesequencingtechnologies
AT wangcharles structuralvariantanalysisofacancerreferencecelllinesampleusingmultiplesequencingtechnologies
AT xiaowenming structuralvariantanalysisofacancerreferencecelllinesampleusingmultiplesequencingtechnologies
AT zhaoyongmei structuralvariantanalysisofacancerreferencecelllinesampleusingmultiplesequencingtechnologies