Cargando…
Structural variant analysis of a cancer reference cell line sample using multiple sequencing technologies
BACKGROUND: The cancer genome is commonly altered with thousands of structural rearrangements including insertions, deletions, translocation, inversions, duplications, and copy number variations. Thus, structural variant (SV) characterization plays a paramount role in cancer target identification, o...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9746098/ https://www.ncbi.nlm.nih.gov/pubmed/36514120 http://dx.doi.org/10.1186/s13059-022-02816-6 |
_version_ | 1784849291244732416 |
---|---|
author | Talsania, Keyur Shen, Tsai-wei Chen, Xiongfong Jaeger, Erich Li, Zhipan Chen, Zhong Chen, Wanqiu Tran, Bao Kusko, Rebecca Wang, Limin Pang, Andy Wing Chun Yang, Zhaowei Choudhari, Sulbha Colgan, Michael Fang, Li Tai Carroll, Andrew Shetty, Jyoti Kriga, Yuliya German, Oksana Smirnova, Tatyana Liu, Tiantain Li, Jing Kellman, Ben Hong, Karl Hastie, Alex R. Natarajan, Aparna Moshrefi, Ali Granat, Anastasiya Truong, Tiffany Bombardi, Robin Mankinen, Veronnica Meerzaman, Daoud Mason, Christopher E. Collins, Jack Stahlberg, Eric Xiao, Chunlin Wang, Charles Xiao, Wenming Zhao, Yongmei |
author_facet | Talsania, Keyur Shen, Tsai-wei Chen, Xiongfong Jaeger, Erich Li, Zhipan Chen, Zhong Chen, Wanqiu Tran, Bao Kusko, Rebecca Wang, Limin Pang, Andy Wing Chun Yang, Zhaowei Choudhari, Sulbha Colgan, Michael Fang, Li Tai Carroll, Andrew Shetty, Jyoti Kriga, Yuliya German, Oksana Smirnova, Tatyana Liu, Tiantain Li, Jing Kellman, Ben Hong, Karl Hastie, Alex R. Natarajan, Aparna Moshrefi, Ali Granat, Anastasiya Truong, Tiffany Bombardi, Robin Mankinen, Veronnica Meerzaman, Daoud Mason, Christopher E. Collins, Jack Stahlberg, Eric Xiao, Chunlin Wang, Charles Xiao, Wenming Zhao, Yongmei |
author_sort | Talsania, Keyur |
collection | PubMed |
description | BACKGROUND: The cancer genome is commonly altered with thousands of structural rearrangements including insertions, deletions, translocation, inversions, duplications, and copy number variations. Thus, structural variant (SV) characterization plays a paramount role in cancer target identification, oncology diagnostics, and personalized medicine. As part of the SEQC2 Consortium effort, the present study established and evaluated a consensus SV call set using a breast cancer reference cell line and matched normal control derived from the same donor, which were used in our companion benchmarking studies as reference samples. RESULTS: We systematically investigated somatic SVs in the reference cancer cell line by comparing to a matched normal cell line using multiple NGS platforms including Illumina short-read, 10X Genomics linked reads, PacBio long reads, Oxford Nanopore long reads, and high-throughput chromosome conformation capture (Hi-C). We established a consensus SV call set of a total of 1788 SVs including 717 deletions, 230 duplications, 551 insertions, 133 inversions, 146 translocations, and 11 breakends for the reference cancer cell line. To independently evaluate and cross-validate the accuracy of our consensus SV call set, we used orthogonal methods including PCR-based validation, Affymetrix arrays, Bionano optical mapping, and identification of fusion genes detected from RNA-seq. We evaluated the strengths and weaknesses of each NGS technology for SV determination, and our findings provide an actionable guide to improve cancer genome SV detection sensitivity and accuracy. CONCLUSIONS: A high-confidence consensus SV call set was established for the reference cancer cell line. A large subset of the variants identified was validated by multiple orthogonal methods. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13059-022-02816-6. |
format | Online Article Text |
id | pubmed-9746098 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-97460982022-12-14 Structural variant analysis of a cancer reference cell line sample using multiple sequencing technologies Talsania, Keyur Shen, Tsai-wei Chen, Xiongfong Jaeger, Erich Li, Zhipan Chen, Zhong Chen, Wanqiu Tran, Bao Kusko, Rebecca Wang, Limin Pang, Andy Wing Chun Yang, Zhaowei Choudhari, Sulbha Colgan, Michael Fang, Li Tai Carroll, Andrew Shetty, Jyoti Kriga, Yuliya German, Oksana Smirnova, Tatyana Liu, Tiantain Li, Jing Kellman, Ben Hong, Karl Hastie, Alex R. Natarajan, Aparna Moshrefi, Ali Granat, Anastasiya Truong, Tiffany Bombardi, Robin Mankinen, Veronnica Meerzaman, Daoud Mason, Christopher E. Collins, Jack Stahlberg, Eric Xiao, Chunlin Wang, Charles Xiao, Wenming Zhao, Yongmei Genome Biol Research BACKGROUND: The cancer genome is commonly altered with thousands of structural rearrangements including insertions, deletions, translocation, inversions, duplications, and copy number variations. Thus, structural variant (SV) characterization plays a paramount role in cancer target identification, oncology diagnostics, and personalized medicine. As part of the SEQC2 Consortium effort, the present study established and evaluated a consensus SV call set using a breast cancer reference cell line and matched normal control derived from the same donor, which were used in our companion benchmarking studies as reference samples. RESULTS: We systematically investigated somatic SVs in the reference cancer cell line by comparing to a matched normal cell line using multiple NGS platforms including Illumina short-read, 10X Genomics linked reads, PacBio long reads, Oxford Nanopore long reads, and high-throughput chromosome conformation capture (Hi-C). We established a consensus SV call set of a total of 1788 SVs including 717 deletions, 230 duplications, 551 insertions, 133 inversions, 146 translocations, and 11 breakends for the reference cancer cell line. To independently evaluate and cross-validate the accuracy of our consensus SV call set, we used orthogonal methods including PCR-based validation, Affymetrix arrays, Bionano optical mapping, and identification of fusion genes detected from RNA-seq. We evaluated the strengths and weaknesses of each NGS technology for SV determination, and our findings provide an actionable guide to improve cancer genome SV detection sensitivity and accuracy. CONCLUSIONS: A high-confidence consensus SV call set was established for the reference cancer cell line. A large subset of the variants identified was validated by multiple orthogonal methods. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13059-022-02816-6. BioMed Central 2022-12-13 /pmc/articles/PMC9746098/ /pubmed/36514120 http://dx.doi.org/10.1186/s13059-022-02816-6 Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/ (https://creativecommons.org/publicdomain/zero/1.0/) ) applies to the data made available in this article, unless otherwise stated in a credit line to the data. |
spellingShingle | Research Talsania, Keyur Shen, Tsai-wei Chen, Xiongfong Jaeger, Erich Li, Zhipan Chen, Zhong Chen, Wanqiu Tran, Bao Kusko, Rebecca Wang, Limin Pang, Andy Wing Chun Yang, Zhaowei Choudhari, Sulbha Colgan, Michael Fang, Li Tai Carroll, Andrew Shetty, Jyoti Kriga, Yuliya German, Oksana Smirnova, Tatyana Liu, Tiantain Li, Jing Kellman, Ben Hong, Karl Hastie, Alex R. Natarajan, Aparna Moshrefi, Ali Granat, Anastasiya Truong, Tiffany Bombardi, Robin Mankinen, Veronnica Meerzaman, Daoud Mason, Christopher E. Collins, Jack Stahlberg, Eric Xiao, Chunlin Wang, Charles Xiao, Wenming Zhao, Yongmei Structural variant analysis of a cancer reference cell line sample using multiple sequencing technologies |
title | Structural variant analysis of a cancer reference cell line sample using multiple sequencing technologies |
title_full | Structural variant analysis of a cancer reference cell line sample using multiple sequencing technologies |
title_fullStr | Structural variant analysis of a cancer reference cell line sample using multiple sequencing technologies |
title_full_unstemmed | Structural variant analysis of a cancer reference cell line sample using multiple sequencing technologies |
title_short | Structural variant analysis of a cancer reference cell line sample using multiple sequencing technologies |
title_sort | structural variant analysis of a cancer reference cell line sample using multiple sequencing technologies |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9746098/ https://www.ncbi.nlm.nih.gov/pubmed/36514120 http://dx.doi.org/10.1186/s13059-022-02816-6 |
work_keys_str_mv | AT talsaniakeyur structuralvariantanalysisofacancerreferencecelllinesampleusingmultiplesequencingtechnologies AT shentsaiwei structuralvariantanalysisofacancerreferencecelllinesampleusingmultiplesequencingtechnologies AT chenxiongfong structuralvariantanalysisofacancerreferencecelllinesampleusingmultiplesequencingtechnologies AT jaegererich structuralvariantanalysisofacancerreferencecelllinesampleusingmultiplesequencingtechnologies AT lizhipan structuralvariantanalysisofacancerreferencecelllinesampleusingmultiplesequencingtechnologies AT chenzhong structuralvariantanalysisofacancerreferencecelllinesampleusingmultiplesequencingtechnologies AT chenwanqiu structuralvariantanalysisofacancerreferencecelllinesampleusingmultiplesequencingtechnologies AT tranbao structuralvariantanalysisofacancerreferencecelllinesampleusingmultiplesequencingtechnologies AT kuskorebecca structuralvariantanalysisofacancerreferencecelllinesampleusingmultiplesequencingtechnologies AT wanglimin structuralvariantanalysisofacancerreferencecelllinesampleusingmultiplesequencingtechnologies AT pangandywingchun structuralvariantanalysisofacancerreferencecelllinesampleusingmultiplesequencingtechnologies AT yangzhaowei structuralvariantanalysisofacancerreferencecelllinesampleusingmultiplesequencingtechnologies AT choudharisulbha structuralvariantanalysisofacancerreferencecelllinesampleusingmultiplesequencingtechnologies AT colganmichael structuralvariantanalysisofacancerreferencecelllinesampleusingmultiplesequencingtechnologies AT fanglitai structuralvariantanalysisofacancerreferencecelllinesampleusingmultiplesequencingtechnologies AT carrollandrew structuralvariantanalysisofacancerreferencecelllinesampleusingmultiplesequencingtechnologies AT shettyjyoti structuralvariantanalysisofacancerreferencecelllinesampleusingmultiplesequencingtechnologies AT krigayuliya structuralvariantanalysisofacancerreferencecelllinesampleusingmultiplesequencingtechnologies AT germanoksana structuralvariantanalysisofacancerreferencecelllinesampleusingmultiplesequencingtechnologies AT smirnovatatyana structuralvariantanalysisofacancerreferencecelllinesampleusingmultiplesequencingtechnologies AT liutiantain structuralvariantanalysisofacancerreferencecelllinesampleusingmultiplesequencingtechnologies AT lijing structuralvariantanalysisofacancerreferencecelllinesampleusingmultiplesequencingtechnologies AT kellmanben structuralvariantanalysisofacancerreferencecelllinesampleusingmultiplesequencingtechnologies AT hongkarl structuralvariantanalysisofacancerreferencecelllinesampleusingmultiplesequencingtechnologies AT hastiealexr structuralvariantanalysisofacancerreferencecelllinesampleusingmultiplesequencingtechnologies AT natarajanaparna structuralvariantanalysisofacancerreferencecelllinesampleusingmultiplesequencingtechnologies AT moshrefiali structuralvariantanalysisofacancerreferencecelllinesampleusingmultiplesequencingtechnologies AT granatanastasiya structuralvariantanalysisofacancerreferencecelllinesampleusingmultiplesequencingtechnologies AT truongtiffany structuralvariantanalysisofacancerreferencecelllinesampleusingmultiplesequencingtechnologies AT bombardirobin structuralvariantanalysisofacancerreferencecelllinesampleusingmultiplesequencingtechnologies AT mankinenveronnica structuralvariantanalysisofacancerreferencecelllinesampleusingmultiplesequencingtechnologies AT meerzamandaoud structuralvariantanalysisofacancerreferencecelllinesampleusingmultiplesequencingtechnologies AT masonchristophere structuralvariantanalysisofacancerreferencecelllinesampleusingmultiplesequencingtechnologies AT collinsjack structuralvariantanalysisofacancerreferencecelllinesampleusingmultiplesequencingtechnologies AT stahlbergeric structuralvariantanalysisofacancerreferencecelllinesampleusingmultiplesequencingtechnologies AT xiaochunlin structuralvariantanalysisofacancerreferencecelllinesampleusingmultiplesequencingtechnologies AT wangcharles structuralvariantanalysisofacancerreferencecelllinesampleusingmultiplesequencingtechnologies AT xiaowenming structuralvariantanalysisofacancerreferencecelllinesampleusingmultiplesequencingtechnologies AT zhaoyongmei structuralvariantanalysisofacancerreferencecelllinesampleusingmultiplesequencingtechnologies |