Cargando…

Demand Prediction and Optimal Allocation of Shared Bikes Around Urban Rail Transit Stations

The imbalance between the supply and demand of shared bikes is prominent in many urban rail transit stations, which urgently requires an efficient vehicle deployment strategy. In this paper, we propose an integrated model to optimize the deployment of shared bikes around urban rail transit stations,...

Descripción completa

Detalles Bibliográficos
Autores principales: Yu, Liang, Feng, Tao, Li, Tie, Cheng, Lei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Berlin Heidelberg 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9747082/
https://www.ncbi.nlm.nih.gov/pubmed/36531437
http://dx.doi.org/10.1007/s40864-022-00183-w
Descripción
Sumario:The imbalance between the supply and demand of shared bikes is prominent in many urban rail transit stations, which urgently requires an efficient vehicle deployment strategy. In this paper, we propose an integrated model to optimize the deployment of shared bikes around urban rail transit stations, incorporating a seasonal autoregressive integrated moving average with long short-term memory (SARIMA-LSTM) hybrid model that is used to predict the heterogeneous demand for shared bikes in space and time. The shared bike deployment strategy was formulated based on the actual deployment process and under the principle of cost minimization involving labor and transportation. The model is applied using the big data of shared bikes in Xicheng District, Beijing. Results show that the SARIMA-LSTM hybrid model has great advantages in predicting the demand for shared bikes. The proposed allocation strategy provides a new way to solve the imbalance challenge between the supply and demand of shared bikes and contributes to the development of a sustainable transportation system.