Cargando…
COVID-19 health data analysis and personal data preserving: A homomorphic privacy enforcement approach
COVID-19 data analysis and prediction from patient data repository collected from hospitals and health organizations. Users’ credentials and personal information are at risk; it could be an unrecoverable issue worldwide. A Homomorphic identification of possible breaches could be more appropriate for...
Autores principales: | Dhasarathan, Chandramohan, Hasan, Mohammad Kamrul, Islam, Shayla, Abdullah, Salwani, Mokhtar, Umi Asma, Javed, Abdul Rehman, Goundar, Sam |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier B.V.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9747234/ https://www.ncbi.nlm.nih.gov/pubmed/36531214 http://dx.doi.org/10.1016/j.comcom.2022.12.004 |
Ejemplares similares
-
A Novel Homomorphic Approach for Preserving Privacy of Patient Data in Telemedicine
por: Iqbal, Yasir, et al.
Publicado: (2022) -
Privacy-Preserving IoT Data Aggregation Based on Blockchain and Homomorphic Encryption
por: Loukil, Faiza, et al.
Publicado: (2021) -
Collaborative privacy-preserving analysis of oncological data using multiparty homomorphic encryption
por: Geva, Ravit, et al.
Publicado: (2023) -
Privacy-preserving cancer type prediction with homomorphic encryption
por: Sarkar, Esha, et al.
Publicado: (2023) -
A Review of Homomorphic Encryption for Privacy-Preserving Biometrics
por: Yang, Wencheng, et al.
Publicado: (2023)