Cargando…
Circular Economy in the Food Chain: Production, Processing and Waste Management
Food processing, from agricultural production to domestic consumption, is responsible for generating great amounts of waste per year, resulting in soil, water, and air pollution. These pollutants, together with the uses of petrochemical process inputs such as solvents, additives, or fuels, increase...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9747261/ https://www.ncbi.nlm.nih.gov/pubmed/36531659 http://dx.doi.org/10.1007/s43615-022-00243-0 |
Sumario: | Food processing, from agricultural production to domestic consumption, is responsible for generating great amounts of waste per year, resulting in soil, water, and air pollution. These pollutants, together with the uses of petrochemical process inputs such as solvents, additives, or fuels, increase the food chain’s environment impacts resulting in wasted resources. In response to this scenario, the circular economy (CE) theory is presented in literature as a liable alternative for the design of more sustainable production chains. In this context, this work was aimed at evaluating the literature’s approach on the CE concept within the food processing and food waste management. The works show the centrality of “food waste” as a focus for the application of the CE. However, despite the relevance of management, reuse, or valuation of food waste, particularly due to its contribution to carbon footprint and decrease of food safety, studies have found other strategies for improvement of CE in the food chain. In this case, works in literature were allocated within the framework presented by the Ellen Macarthur Foundation called ReSOLVE, with proposals for modification of production chain to promote the CE. Among the proposals, one should highlight: modification of productive systems for mitigation of environmental impacts and greenhouse emissions, processes optimization for decreasing the use of natural resources and wastes, use of 4.0 Industry such as IoT, big data, or machine learning techniques for improvement of the whole supply chain, development of collaborative platforms for production and market, use of residues or co-products by design of intra- or inter-chain loops, and exchange of process or inputs with high environmental impacts for greener ones. |
---|