Cargando…
Use of Artificial Intelligence for Reducing Unnecessary Recalls at Screening Mammography: A Simulation Study
OBJECTIVE: To conduct a simulation study to determine whether artificial intelligence (AI)-aided mammography reading can reduce unnecessary recalls while maintaining cancer detection ability in women recalled after mammography screening. MATERIALS AND METHODS: A retrospective reader study was perfor...
Autores principales: | Kim, Yeon Soo, Jang, Myoung-jin, Lee, Su Hyun, Kim, Soo-Yeon, Ha, Su Min, Kwon, Bo Ra, Moon, Woo Kyung, Chang, Jung Min |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Korean Society of Radiology
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9747265/ https://www.ncbi.nlm.nih.gov/pubmed/36447412 http://dx.doi.org/10.3348/kjr.2022.0263 |
Ejemplares similares
-
Detection of Contralateral Breast Cancer Using Diffusion-Weighted Magnetic Resonance Imaging in Women with Newly Diagnosed Breast Cancer: Comparison with Combined Mammography and Whole-Breast Ultrasound
por: Ha, Su Min, et al.
Publicado: (2021) -
Digital Breast Tomosynthesis Plus Ultrasound Versus Digital Mammography Plus Ultrasound for Screening Breast Cancer in Women With Dense Breasts
por: Ha, Su Min, et al.
Publicado: (2023) -
Deep Learning-Based Artificial Intelligence for Mammography
por: Yoon, Jung Hyun, et al.
Publicado: (2021) -
Automated Breast Ultrasound System for Breast Cancer Evaluation: Diagnostic Performance of the Two-View Scan Technique in Women with Small Breasts
por: Kwon, Bo Ra, et al.
Publicado: (2020) -
Comparison of Abbreviated MRI and Full Diagnostic MRI in Distinguishing between Benign and Malignant Lesions Detected by Breast MRI: A Multireader Study
por: Kim, Eun Sil, et al.
Publicado: (2021)