Cargando…
Development and Validation of MRI-Based Radiomics Models for Diagnosing Juvenile Myoclonic Epilepsy
OBJECTIVE: Radiomic modeling using multiple regions of interest in MRI of the brain to diagnose juvenile myoclonic epilepsy (JME) has not yet been investigated. This study aimed to develop and validate radiomics prediction models to distinguish patients with JME from healthy controls (HCs), and to e...
Autores principales: | Kim, Kyung Min, Hwang, Heewon, Sohn, Beomseok, Park, Kisung, Han, Kyunghwa, Ahn, Sung Soo, Lee, Wonwoo, Chu, Min Kyung, Heo, Kyoung, Lee, Seung-Koo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Korean Society of Radiology
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9747272/ https://www.ncbi.nlm.nih.gov/pubmed/36447416 http://dx.doi.org/10.3348/kjr.2022.0539 |
Ejemplares similares
-
Response to “Radiomic Models for Diagnosing Juvenile Myoclonic Epilepsy Should Note Its Genetic Heterogeneity”
por: Kim, Kyung Min, et al.
Publicado: (2023) -
Development and Testing of a Machine Learning Model Using (18)F-Fluorodeoxyglucose PET/CT-Derived Metabolic Parameters to Classify Human Papillomavirus Status in Oropharyngeal Squamous Carcinoma
por: Woo, Changsoo, et al.
Publicado: (2023) -
Quality Reporting of Radiomics Analysis in Mild Cognitive Impairment and Alzheimer's Disease: A Roadmap for Moving Forward
por: Won, So Yeon, et al.
Publicado: (2020) -
Quality of Radiomics Research on Brain Metastasis: A Roadmap to Promote Clinical Translation
por: Park, Chae Jung, et al.
Publicado: (2022) -
Radiomics MRI Phenotyping with Machine Learning to Predict the Grade of Lower-Grade Gliomas: A Study Focused on Nonenhancing Tumors
por: Park, Yae Won, et al.
Publicado: (2019)