Cargando…
HBO1 as an Important Target for the Treatment of CCL4-Induced Liver Fibrosis and Aged-Related Liver Aging and Fibrosis
The liver is the largest digestive organ in the human body. The increasing incidence of chronic liver fibrosis is one of the major health challenges in the world. Liver fibrosis is a wound-healing response to acute or chronic cellular damage of liver tissue. At present, despite a series of research...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9747301/ https://www.ncbi.nlm.nih.gov/pubmed/36524217 http://dx.doi.org/10.1155/2022/1881519 |
Sumario: | The liver is the largest digestive organ in the human body. The increasing incidence of chronic liver fibrosis is one of the major health challenges in the world. Liver fibrosis is a wound-healing response to acute or chronic cellular damage of liver tissue. At present, despite a series of research progress on the pathophysiological mechanism of fibrosis that has been made, there is still a gap in identifying antifibrotic targets and converting them into effective treatments. Therefore, it is extremely important to seek a molecular target that can alleviate or reverse liver fibrosis, which has important scientific and clinical significance. In the current study, to evaluate the therapeutic effect of HBO1 as a molecular target on liver aging and fibrosis, naturally-aged mice and CCL4-induced liver fibrosis mice were used as animal models, and multiple experiments were performed. Experimental results showed that HBO1 knockdown could strongly mitigate the accumulation of hepatic collagen by Masson and Sirius Red staining. Further study showed that HBO1 knockdown reduced the expression of fibrosis-related marker molecules (α-SMA, collagen type I (ColI), and fibronectin). Further work showed that HBO1 knockdown could significantly alleviate HSC activation. On this basis, we analyzed the underlying mechanism by which HBO1 alleviates liver fibrosis. It was found that HBO1 knockdown may modulate liver fibrosis by regulating the processes of EMT, inflammation, and oxidative stress. We further studied the effect of HBO1 knockdown on liver aging and aging-related liver fibrosis, and the results showed that HBO1 knockdown could significantly reduce the level of aging-related liver fibrosis and relieve liver aging. In conclusion, we systematically investigated the potential of HBO1 as a therapeutic target to attenuate liver fibrosis and liver aging. The current study found a crucial target for liver fibrosis and liver-aging therapy, which has laid a solid foundation for the liver fibrosis-related research. |
---|