Cargando…
A NOVEL DIAGNOSIS AND SEVERITY PREDICTION ML-BASED MODEL: APPLICATION TO THE IDENTIFICATION AND PREDICTION OF COVID-19 FROM CT RADIOMIC FEATURES
Autores principales: | Khaniabadi, Pegah Moradi, Bouchareb, Yassine, Al-Dhuhli, Humoud, Shiri, Mr. Isaac, Al-Kindi, Faiza, Zaidi, Habib, Rahmim, Arman |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Associazione Italiana di Fisica Medica e Sanitaria. Published by Elsevier Ltd.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9747732/ http://dx.doi.org/10.1016/S1120-1797(22)02293-1 |
Ejemplares similares
-
Two-step machine learning to diagnose and predict involvement of lungs in COVID-19 and pneumonia using CT radiomics
por: Moradi Khaniabadi, Pegah, et al.
Publicado: (2022) -
Artificial intelligence-driven assessment of radiological images for COVID-19
por: Bouchareb, Yassine, et al.
Publicado: (2021) -
High-dimensional multinomial multiclass severity scoring of COVID-19 pneumonia using CT radiomics features and machine learning algorithms
por: Shiri, Isaac, et al.
Publicado: (2022) -
Radiomics predictive modeling from dual-time-point FDG PET K(i) parametric maps: application to chemotherapy response in lymphoma
por: Samimi, Rezvan, et al.
Publicado: (2023) -
Physiological Intracranial Calcifications in Children: A computed tomography-based study
por: Al Hajri, Faiza, et al.
Publicado: (2023)