Cargando…
ARTIFICIAL INTELLIGENCE MODELS FOR COVID-19 CLASSIFICATION: RADIOMIC FEATURES AND QUANTITATIVE ANALYSIS OF COMPUTED TOMOGRAPHY IMAGING OF VIRAL PNEUMONIA
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Associazione Italiana di Fisica Medica e Sanitaria. Published by Elsevier Ltd.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9747734/ http://dx.doi.org/10.1016/S1120-1797(22)02215-3 |
_version_ | 1784849669251137536 |
---|---|
author | Zorzi, Giulia Berta, Luca Carrazza, Stefano Rizzetto, Francesco De Mattia, Cristina Jacopo Felisi, Marco Maria Molteni, S Nerini Vanzulli, Angelo Torresin, Alberto Colombo, Paola Enrica |
author_facet | Zorzi, Giulia Berta, Luca Carrazza, Stefano Rizzetto, Francesco De Mattia, Cristina Jacopo Felisi, Marco Maria Molteni, S Nerini Vanzulli, Angelo Torresin, Alberto Colombo, Paola Enrica |
author_sort | Zorzi, Giulia |
collection | PubMed |
description | |
format | Online Article Text |
id | pubmed-9747734 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Associazione Italiana di Fisica Medica e Sanitaria. Published by Elsevier Ltd. |
record_format | MEDLINE/PubMed |
spelling | pubmed-97477342022-12-14 ARTIFICIAL INTELLIGENCE MODELS FOR COVID-19 CLASSIFICATION: RADIOMIC FEATURES AND QUANTITATIVE ANALYSIS OF COMPUTED TOMOGRAPHY IMAGING OF VIRAL PNEUMONIA Zorzi, Giulia Berta, Luca Carrazza, Stefano Rizzetto, Francesco De Mattia, Cristina Jacopo Felisi, Marco Maria Molteni, S Nerini Vanzulli, Angelo Torresin, Alberto Colombo, Paola Enrica Phys Med Oral Presentations Associazione Italiana di Fisica Medica e Sanitaria. Published by Elsevier Ltd. 2022-12 2022-12-14 /pmc/articles/PMC9747734/ http://dx.doi.org/10.1016/S1120-1797(22)02215-3 Text en Copyright © 2022 Associazione Italiana di Fisica Medica e Sanitaria. Published by Elsevier Ltd. All rights reserved. Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active. |
spellingShingle | Oral Presentations Zorzi, Giulia Berta, Luca Carrazza, Stefano Rizzetto, Francesco De Mattia, Cristina Jacopo Felisi, Marco Maria Molteni, S Nerini Vanzulli, Angelo Torresin, Alberto Colombo, Paola Enrica ARTIFICIAL INTELLIGENCE MODELS FOR COVID-19 CLASSIFICATION: RADIOMIC FEATURES AND QUANTITATIVE ANALYSIS OF COMPUTED TOMOGRAPHY IMAGING OF VIRAL PNEUMONIA |
title | ARTIFICIAL INTELLIGENCE MODELS FOR COVID-19 CLASSIFICATION: RADIOMIC FEATURES AND QUANTITATIVE ANALYSIS OF COMPUTED TOMOGRAPHY IMAGING OF VIRAL PNEUMONIA |
title_full | ARTIFICIAL INTELLIGENCE MODELS FOR COVID-19 CLASSIFICATION: RADIOMIC FEATURES AND QUANTITATIVE ANALYSIS OF COMPUTED TOMOGRAPHY IMAGING OF VIRAL PNEUMONIA |
title_fullStr | ARTIFICIAL INTELLIGENCE MODELS FOR COVID-19 CLASSIFICATION: RADIOMIC FEATURES AND QUANTITATIVE ANALYSIS OF COMPUTED TOMOGRAPHY IMAGING OF VIRAL PNEUMONIA |
title_full_unstemmed | ARTIFICIAL INTELLIGENCE MODELS FOR COVID-19 CLASSIFICATION: RADIOMIC FEATURES AND QUANTITATIVE ANALYSIS OF COMPUTED TOMOGRAPHY IMAGING OF VIRAL PNEUMONIA |
title_short | ARTIFICIAL INTELLIGENCE MODELS FOR COVID-19 CLASSIFICATION: RADIOMIC FEATURES AND QUANTITATIVE ANALYSIS OF COMPUTED TOMOGRAPHY IMAGING OF VIRAL PNEUMONIA |
title_sort | artificial intelligence models for covid-19 classification: radiomic features and quantitative analysis of computed tomography imaging of viral pneumonia |
topic | Oral Presentations |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9747734/ http://dx.doi.org/10.1016/S1120-1797(22)02215-3 |
work_keys_str_mv | AT zorzigiulia artificialintelligencemodelsforcovid19classificationradiomicfeaturesandquantitativeanalysisofcomputedtomographyimagingofviralpneumonia AT bertaluca artificialintelligencemodelsforcovid19classificationradiomicfeaturesandquantitativeanalysisofcomputedtomographyimagingofviralpneumonia AT carrazzastefano artificialintelligencemodelsforcovid19classificationradiomicfeaturesandquantitativeanalysisofcomputedtomographyimagingofviralpneumonia AT rizzettofrancesco artificialintelligencemodelsforcovid19classificationradiomicfeaturesandquantitativeanalysisofcomputedtomographyimagingofviralpneumonia AT demattiacristina artificialintelligencemodelsforcovid19classificationradiomicfeaturesandquantitativeanalysisofcomputedtomographyimagingofviralpneumonia AT jacopofelisimarcomaria artificialintelligencemodelsforcovid19classificationradiomicfeaturesandquantitativeanalysisofcomputedtomographyimagingofviralpneumonia AT moltenisnerini artificialintelligencemodelsforcovid19classificationradiomicfeaturesandquantitativeanalysisofcomputedtomographyimagingofviralpneumonia AT vanzulliangelo artificialintelligencemodelsforcovid19classificationradiomicfeaturesandquantitativeanalysisofcomputedtomographyimagingofviralpneumonia AT torresinalberto artificialintelligencemodelsforcovid19classificationradiomicfeaturesandquantitativeanalysisofcomputedtomographyimagingofviralpneumonia AT colombopaolaenrica artificialintelligencemodelsforcovid19classificationradiomicfeaturesandquantitativeanalysisofcomputedtomographyimagingofviralpneumonia |