Cargando…

Machine learning multi-omics analysis reveals cancer driver dysregulation in pan-cancer cell lines compared to primary tumors

Cancer cell lines have been widely used for decades to study biological processes driving cancer development, and to identify biomarkers of response to therapeutic agents. Advances in genomic sequencing have made possible large-scale genomic characterizations of collections of cancer cell lines and...

Descripción completa

Detalles Bibliográficos
Autores principales: Sanders, Lauren M., Chandra, Rahul, Zebarjadi, Navid, Beale, Holly C., Lyle, A. Geoffrey, Rodriguez, Analiz, Kephart, Ellen Towle, Pfeil, Jacob, Cheney, Allison, Learned, Katrina, Currie, Rob, Gitlin, Leonid, Vengerov, David, Haussler, David, Salama, Sofie R., Vaske, Olena M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9747808/
https://www.ncbi.nlm.nih.gov/pubmed/36513728
http://dx.doi.org/10.1038/s42003-022-04075-4
_version_ 1784849686445686784
author Sanders, Lauren M.
Chandra, Rahul
Zebarjadi, Navid
Beale, Holly C.
Lyle, A. Geoffrey
Rodriguez, Analiz
Kephart, Ellen Towle
Pfeil, Jacob
Cheney, Allison
Learned, Katrina
Currie, Rob
Gitlin, Leonid
Vengerov, David
Haussler, David
Salama, Sofie R.
Vaske, Olena M.
author_facet Sanders, Lauren M.
Chandra, Rahul
Zebarjadi, Navid
Beale, Holly C.
Lyle, A. Geoffrey
Rodriguez, Analiz
Kephart, Ellen Towle
Pfeil, Jacob
Cheney, Allison
Learned, Katrina
Currie, Rob
Gitlin, Leonid
Vengerov, David
Haussler, David
Salama, Sofie R.
Vaske, Olena M.
author_sort Sanders, Lauren M.
collection PubMed
description Cancer cell lines have been widely used for decades to study biological processes driving cancer development, and to identify biomarkers of response to therapeutic agents. Advances in genomic sequencing have made possible large-scale genomic characterizations of collections of cancer cell lines and primary tumors, such as the Cancer Cell Line Encyclopedia (CCLE) and The Cancer Genome Atlas (TCGA). These studies allow for the first time a comprehensive evaluation of the comparability of cancer cell lines and primary tumors on the genomic and proteomic level. Here we employ bulk mRNA and micro-RNA sequencing data from thousands of samples in CCLE and TCGA, and proteomic data from partner studies in the MD Anderson Cell Line Project (MCLP) and The Cancer Proteome Atlas (TCPA), to characterize the extent to which cancer cell lines recapitulate tumors. We identify dysregulation of a long non-coding RNA and microRNA regulatory network in cancer cell lines, associated with differential expression between cell lines and primary tumors in four key cancer driver pathways: KRAS signaling, NFKB signaling, IL2/STAT5 signaling and TP53 signaling. Our results emphasize the necessity for careful interpretation of cancer cell line experiments, particularly with respect to therapeutic treatments targeting these important cancer pathways.
format Online
Article
Text
id pubmed-9747808
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-97478082022-12-15 Machine learning multi-omics analysis reveals cancer driver dysregulation in pan-cancer cell lines compared to primary tumors Sanders, Lauren M. Chandra, Rahul Zebarjadi, Navid Beale, Holly C. Lyle, A. Geoffrey Rodriguez, Analiz Kephart, Ellen Towle Pfeil, Jacob Cheney, Allison Learned, Katrina Currie, Rob Gitlin, Leonid Vengerov, David Haussler, David Salama, Sofie R. Vaske, Olena M. Commun Biol Article Cancer cell lines have been widely used for decades to study biological processes driving cancer development, and to identify biomarkers of response to therapeutic agents. Advances in genomic sequencing have made possible large-scale genomic characterizations of collections of cancer cell lines and primary tumors, such as the Cancer Cell Line Encyclopedia (CCLE) and The Cancer Genome Atlas (TCGA). These studies allow for the first time a comprehensive evaluation of the comparability of cancer cell lines and primary tumors on the genomic and proteomic level. Here we employ bulk mRNA and micro-RNA sequencing data from thousands of samples in CCLE and TCGA, and proteomic data from partner studies in the MD Anderson Cell Line Project (MCLP) and The Cancer Proteome Atlas (TCPA), to characterize the extent to which cancer cell lines recapitulate tumors. We identify dysregulation of a long non-coding RNA and microRNA regulatory network in cancer cell lines, associated with differential expression between cell lines and primary tumors in four key cancer driver pathways: KRAS signaling, NFKB signaling, IL2/STAT5 signaling and TP53 signaling. Our results emphasize the necessity for careful interpretation of cancer cell line experiments, particularly with respect to therapeutic treatments targeting these important cancer pathways. Nature Publishing Group UK 2022-12-13 /pmc/articles/PMC9747808/ /pubmed/36513728 http://dx.doi.org/10.1038/s42003-022-04075-4 Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Sanders, Lauren M.
Chandra, Rahul
Zebarjadi, Navid
Beale, Holly C.
Lyle, A. Geoffrey
Rodriguez, Analiz
Kephart, Ellen Towle
Pfeil, Jacob
Cheney, Allison
Learned, Katrina
Currie, Rob
Gitlin, Leonid
Vengerov, David
Haussler, David
Salama, Sofie R.
Vaske, Olena M.
Machine learning multi-omics analysis reveals cancer driver dysregulation in pan-cancer cell lines compared to primary tumors
title Machine learning multi-omics analysis reveals cancer driver dysregulation in pan-cancer cell lines compared to primary tumors
title_full Machine learning multi-omics analysis reveals cancer driver dysregulation in pan-cancer cell lines compared to primary tumors
title_fullStr Machine learning multi-omics analysis reveals cancer driver dysregulation in pan-cancer cell lines compared to primary tumors
title_full_unstemmed Machine learning multi-omics analysis reveals cancer driver dysregulation in pan-cancer cell lines compared to primary tumors
title_short Machine learning multi-omics analysis reveals cancer driver dysregulation in pan-cancer cell lines compared to primary tumors
title_sort machine learning multi-omics analysis reveals cancer driver dysregulation in pan-cancer cell lines compared to primary tumors
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9747808/
https://www.ncbi.nlm.nih.gov/pubmed/36513728
http://dx.doi.org/10.1038/s42003-022-04075-4
work_keys_str_mv AT sanderslaurenm machinelearningmultiomicsanalysisrevealscancerdriverdysregulationinpancancercelllinescomparedtoprimarytumors
AT chandrarahul machinelearningmultiomicsanalysisrevealscancerdriverdysregulationinpancancercelllinescomparedtoprimarytumors
AT zebarjadinavid machinelearningmultiomicsanalysisrevealscancerdriverdysregulationinpancancercelllinescomparedtoprimarytumors
AT bealehollyc machinelearningmultiomicsanalysisrevealscancerdriverdysregulationinpancancercelllinescomparedtoprimarytumors
AT lyleageoffrey machinelearningmultiomicsanalysisrevealscancerdriverdysregulationinpancancercelllinescomparedtoprimarytumors
AT rodriguezanaliz machinelearningmultiomicsanalysisrevealscancerdriverdysregulationinpancancercelllinescomparedtoprimarytumors
AT kephartellentowle machinelearningmultiomicsanalysisrevealscancerdriverdysregulationinpancancercelllinescomparedtoprimarytumors
AT pfeiljacob machinelearningmultiomicsanalysisrevealscancerdriverdysregulationinpancancercelllinescomparedtoprimarytumors
AT cheneyallison machinelearningmultiomicsanalysisrevealscancerdriverdysregulationinpancancercelllinescomparedtoprimarytumors
AT learnedkatrina machinelearningmultiomicsanalysisrevealscancerdriverdysregulationinpancancercelllinescomparedtoprimarytumors
AT currierob machinelearningmultiomicsanalysisrevealscancerdriverdysregulationinpancancercelllinescomparedtoprimarytumors
AT gitlinleonid machinelearningmultiomicsanalysisrevealscancerdriverdysregulationinpancancercelllinescomparedtoprimarytumors
AT vengerovdavid machinelearningmultiomicsanalysisrevealscancerdriverdysregulationinpancancercelllinescomparedtoprimarytumors
AT hausslerdavid machinelearningmultiomicsanalysisrevealscancerdriverdysregulationinpancancercelllinescomparedtoprimarytumors
AT salamasofier machinelearningmultiomicsanalysisrevealscancerdriverdysregulationinpancancercelllinescomparedtoprimarytumors
AT vaskeolenam machinelearningmultiomicsanalysisrevealscancerdriverdysregulationinpancancercelllinescomparedtoprimarytumors