Cargando…
Autoencoders for sample size estimation for fully connected neural network classifiers
Sample size estimation is a crucial step in experimental design but is understudied in the context of deep learning. Currently, estimating the quantity of labeled data needed to train a classifier to a desired performance, is largely based on prior experience with similar models and problems or on u...
Autores principales: | Gulamali, Faris F., Sawant, Ashwin S., Kovatch, Patricia, Glicksberg, Benjamin, Charney, Alexander, Nadkarni, Girish N., Oermann, Eric |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9747810/ https://www.ncbi.nlm.nih.gov/pubmed/36513729 http://dx.doi.org/10.1038/s41746-022-00728-0 |
Ejemplares similares
-
Development of a federated learning approach to predict acute kidney injury in adult hospitalized patients with COVID-19 in New York City
por: Jaladanki, Suraj K, et al.
Publicado: (2021) -
Cannabis Use and CKD: Epidemiological Associations and Mendelian Randomization
por: Dellepiane, Sergio, et al.
Publicado: (2022) -
A foundational vision transformer improves diagnostic performance for electrocardiograms
por: Vaid, Akhil, et al.
Publicado: (2023) -
RN-Autoencoder: Reduced Noise Autoencoder for classifying imbalanced cancer genomic data
por: Arafa, Ahmed, et al.
Publicado: (2023) -
Autoencoder based local T cell repertoire density can be used to classify samples and T cell receptors
por: Dvorkin, Shirit, et al.
Publicado: (2021)