Cargando…
Neutrophil trafficking to the site of infection requires Cpt1a-dependent fatty acid β-oxidation
Cellular metabolism influences immune cell function, with mitochondrial fatty acid β-oxidation and oxidative phosphorylation required for multiple immune cell phenotypes. Carnitine palmitoyltransferase 1a (Cpt1a) is considered the rate-limiting enzyme for mitochondrial metabolism of long-chain fatty...
Autores principales: | , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9747976/ https://www.ncbi.nlm.nih.gov/pubmed/36513703 http://dx.doi.org/10.1038/s42003-022-04339-z |
_version_ | 1784849723720466432 |
---|---|
author | Pham, Ly Komalavilas, Padmini Eddie, Alex M. Thayer, Timothy E. Greenwood, Dalton L. Liu, Ken H. Weinberg, Jaclyn Patterson, Andrew Fessel, Joshua P. Boyd, Kelli L. Schafer, Jenny C. Kuck, Jamie L. Shaver, Aaron C. Flaherty, David K. Matlock, Brittany K. Wijers, Christiaan D. M. Serezani, C. Henrique Jones, Dean P. Brittain, Evan L. Rathmell, Jeffrey C. Noto, Michael J. |
author_facet | Pham, Ly Komalavilas, Padmini Eddie, Alex M. Thayer, Timothy E. Greenwood, Dalton L. Liu, Ken H. Weinberg, Jaclyn Patterson, Andrew Fessel, Joshua P. Boyd, Kelli L. Schafer, Jenny C. Kuck, Jamie L. Shaver, Aaron C. Flaherty, David K. Matlock, Brittany K. Wijers, Christiaan D. M. Serezani, C. Henrique Jones, Dean P. Brittain, Evan L. Rathmell, Jeffrey C. Noto, Michael J. |
author_sort | Pham, Ly |
collection | PubMed |
description | Cellular metabolism influences immune cell function, with mitochondrial fatty acid β-oxidation and oxidative phosphorylation required for multiple immune cell phenotypes. Carnitine palmitoyltransferase 1a (Cpt1a) is considered the rate-limiting enzyme for mitochondrial metabolism of long-chain fatty acids, and Cpt1a deficiency is associated with infant mortality and infection risk. This study was undertaken to test the hypothesis that impairment in Cpt1a-dependent fatty acid oxidation results in increased susceptibility to infection. Screening the Cpt1a gene for common variants predicted to affect protein function revealed allele rs2229738_T, which was associated with pneumonia risk in a targeted human phenome association study. Pharmacologic inhibition of Cpt1a increases mortality and impairs control of the infection in a murine model of bacterial pneumonia. Susceptibility to pneumonia is associated with blunted neutrophilic responses in mice and humans that result from impaired neutrophil trafficking to the site of infection. Chemotaxis responsible for neutrophil trafficking requires Cpt1a-dependent mitochondrial fatty acid oxidation for amplification of chemoattractant signals. These findings identify Cpt1a as a potential host determinant of infection susceptibility and demonstrate a requirement for mitochondrial fatty acid oxidation in neutrophil biology. |
format | Online Article Text |
id | pubmed-9747976 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-97479762022-12-15 Neutrophil trafficking to the site of infection requires Cpt1a-dependent fatty acid β-oxidation Pham, Ly Komalavilas, Padmini Eddie, Alex M. Thayer, Timothy E. Greenwood, Dalton L. Liu, Ken H. Weinberg, Jaclyn Patterson, Andrew Fessel, Joshua P. Boyd, Kelli L. Schafer, Jenny C. Kuck, Jamie L. Shaver, Aaron C. Flaherty, David K. Matlock, Brittany K. Wijers, Christiaan D. M. Serezani, C. Henrique Jones, Dean P. Brittain, Evan L. Rathmell, Jeffrey C. Noto, Michael J. Commun Biol Article Cellular metabolism influences immune cell function, with mitochondrial fatty acid β-oxidation and oxidative phosphorylation required for multiple immune cell phenotypes. Carnitine palmitoyltransferase 1a (Cpt1a) is considered the rate-limiting enzyme for mitochondrial metabolism of long-chain fatty acids, and Cpt1a deficiency is associated with infant mortality and infection risk. This study was undertaken to test the hypothesis that impairment in Cpt1a-dependent fatty acid oxidation results in increased susceptibility to infection. Screening the Cpt1a gene for common variants predicted to affect protein function revealed allele rs2229738_T, which was associated with pneumonia risk in a targeted human phenome association study. Pharmacologic inhibition of Cpt1a increases mortality and impairs control of the infection in a murine model of bacterial pneumonia. Susceptibility to pneumonia is associated with blunted neutrophilic responses in mice and humans that result from impaired neutrophil trafficking to the site of infection. Chemotaxis responsible for neutrophil trafficking requires Cpt1a-dependent mitochondrial fatty acid oxidation for amplification of chemoattractant signals. These findings identify Cpt1a as a potential host determinant of infection susceptibility and demonstrate a requirement for mitochondrial fatty acid oxidation in neutrophil biology. Nature Publishing Group UK 2022-12-13 /pmc/articles/PMC9747976/ /pubmed/36513703 http://dx.doi.org/10.1038/s42003-022-04339-z Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Article Pham, Ly Komalavilas, Padmini Eddie, Alex M. Thayer, Timothy E. Greenwood, Dalton L. Liu, Ken H. Weinberg, Jaclyn Patterson, Andrew Fessel, Joshua P. Boyd, Kelli L. Schafer, Jenny C. Kuck, Jamie L. Shaver, Aaron C. Flaherty, David K. Matlock, Brittany K. Wijers, Christiaan D. M. Serezani, C. Henrique Jones, Dean P. Brittain, Evan L. Rathmell, Jeffrey C. Noto, Michael J. Neutrophil trafficking to the site of infection requires Cpt1a-dependent fatty acid β-oxidation |
title | Neutrophil trafficking to the site of infection requires Cpt1a-dependent fatty acid β-oxidation |
title_full | Neutrophil trafficking to the site of infection requires Cpt1a-dependent fatty acid β-oxidation |
title_fullStr | Neutrophil trafficking to the site of infection requires Cpt1a-dependent fatty acid β-oxidation |
title_full_unstemmed | Neutrophil trafficking to the site of infection requires Cpt1a-dependent fatty acid β-oxidation |
title_short | Neutrophil trafficking to the site of infection requires Cpt1a-dependent fatty acid β-oxidation |
title_sort | neutrophil trafficking to the site of infection requires cpt1a-dependent fatty acid β-oxidation |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9747976/ https://www.ncbi.nlm.nih.gov/pubmed/36513703 http://dx.doi.org/10.1038/s42003-022-04339-z |
work_keys_str_mv | AT phamly neutrophiltraffickingtothesiteofinfectionrequirescpt1adependentfattyacidboxidation AT komalavilaspadmini neutrophiltraffickingtothesiteofinfectionrequirescpt1adependentfattyacidboxidation AT eddiealexm neutrophiltraffickingtothesiteofinfectionrequirescpt1adependentfattyacidboxidation AT thayertimothye neutrophiltraffickingtothesiteofinfectionrequirescpt1adependentfattyacidboxidation AT greenwooddaltonl neutrophiltraffickingtothesiteofinfectionrequirescpt1adependentfattyacidboxidation AT liukenh neutrophiltraffickingtothesiteofinfectionrequirescpt1adependentfattyacidboxidation AT weinbergjaclyn neutrophiltraffickingtothesiteofinfectionrequirescpt1adependentfattyacidboxidation AT pattersonandrew neutrophiltraffickingtothesiteofinfectionrequirescpt1adependentfattyacidboxidation AT fesseljoshuap neutrophiltraffickingtothesiteofinfectionrequirescpt1adependentfattyacidboxidation AT boydkellil neutrophiltraffickingtothesiteofinfectionrequirescpt1adependentfattyacidboxidation AT schaferjennyc neutrophiltraffickingtothesiteofinfectionrequirescpt1adependentfattyacidboxidation AT kuckjamiel neutrophiltraffickingtothesiteofinfectionrequirescpt1adependentfattyacidboxidation AT shaveraaronc neutrophiltraffickingtothesiteofinfectionrequirescpt1adependentfattyacidboxidation AT flahertydavidk neutrophiltraffickingtothesiteofinfectionrequirescpt1adependentfattyacidboxidation AT matlockbrittanyk neutrophiltraffickingtothesiteofinfectionrequirescpt1adependentfattyacidboxidation AT wijerschristiaandm neutrophiltraffickingtothesiteofinfectionrequirescpt1adependentfattyacidboxidation AT serezanichenrique neutrophiltraffickingtothesiteofinfectionrequirescpt1adependentfattyacidboxidation AT jonesdeanp neutrophiltraffickingtothesiteofinfectionrequirescpt1adependentfattyacidboxidation AT brittainevanl neutrophiltraffickingtothesiteofinfectionrequirescpt1adependentfattyacidboxidation AT rathmelljeffreyc neutrophiltraffickingtothesiteofinfectionrequirescpt1adependentfattyacidboxidation AT notomichaelj neutrophiltraffickingtothesiteofinfectionrequirescpt1adependentfattyacidboxidation |