Cargando…

Neutrophil trafficking to the site of infection requires Cpt1a-dependent fatty acid β-oxidation

Cellular metabolism influences immune cell function, with mitochondrial fatty acid β-oxidation and oxidative phosphorylation required for multiple immune cell phenotypes. Carnitine palmitoyltransferase 1a (Cpt1a) is considered the rate-limiting enzyme for mitochondrial metabolism of long-chain fatty...

Descripción completa

Detalles Bibliográficos
Autores principales: Pham, Ly, Komalavilas, Padmini, Eddie, Alex M., Thayer, Timothy E., Greenwood, Dalton L., Liu, Ken H., Weinberg, Jaclyn, Patterson, Andrew, Fessel, Joshua P., Boyd, Kelli L., Schafer, Jenny C., Kuck, Jamie L., Shaver, Aaron C., Flaherty, David K., Matlock, Brittany K., Wijers, Christiaan D. M., Serezani, C. Henrique, Jones, Dean P., Brittain, Evan L., Rathmell, Jeffrey C., Noto, Michael J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9747976/
https://www.ncbi.nlm.nih.gov/pubmed/36513703
http://dx.doi.org/10.1038/s42003-022-04339-z
_version_ 1784849723720466432
author Pham, Ly
Komalavilas, Padmini
Eddie, Alex M.
Thayer, Timothy E.
Greenwood, Dalton L.
Liu, Ken H.
Weinberg, Jaclyn
Patterson, Andrew
Fessel, Joshua P.
Boyd, Kelli L.
Schafer, Jenny C.
Kuck, Jamie L.
Shaver, Aaron C.
Flaherty, David K.
Matlock, Brittany K.
Wijers, Christiaan D. M.
Serezani, C. Henrique
Jones, Dean P.
Brittain, Evan L.
Rathmell, Jeffrey C.
Noto, Michael J.
author_facet Pham, Ly
Komalavilas, Padmini
Eddie, Alex M.
Thayer, Timothy E.
Greenwood, Dalton L.
Liu, Ken H.
Weinberg, Jaclyn
Patterson, Andrew
Fessel, Joshua P.
Boyd, Kelli L.
Schafer, Jenny C.
Kuck, Jamie L.
Shaver, Aaron C.
Flaherty, David K.
Matlock, Brittany K.
Wijers, Christiaan D. M.
Serezani, C. Henrique
Jones, Dean P.
Brittain, Evan L.
Rathmell, Jeffrey C.
Noto, Michael J.
author_sort Pham, Ly
collection PubMed
description Cellular metabolism influences immune cell function, with mitochondrial fatty acid β-oxidation and oxidative phosphorylation required for multiple immune cell phenotypes. Carnitine palmitoyltransferase 1a (Cpt1a) is considered the rate-limiting enzyme for mitochondrial metabolism of long-chain fatty acids, and Cpt1a deficiency is associated with infant mortality and infection risk. This study was undertaken to test the hypothesis that impairment in Cpt1a-dependent fatty acid oxidation results in increased susceptibility to infection. Screening the Cpt1a gene for common variants predicted to affect protein function revealed allele rs2229738_T, which was associated with pneumonia risk in a targeted human phenome association study. Pharmacologic inhibition of Cpt1a increases mortality and impairs control of the infection in a murine model of bacterial pneumonia. Susceptibility to pneumonia is associated with blunted neutrophilic responses in mice and humans that result from impaired neutrophil trafficking to the site of infection. Chemotaxis responsible for neutrophil trafficking requires Cpt1a-dependent mitochondrial fatty acid oxidation for amplification of chemoattractant signals. These findings identify Cpt1a as a potential host determinant of infection susceptibility and demonstrate a requirement for mitochondrial fatty acid oxidation in neutrophil biology.
format Online
Article
Text
id pubmed-9747976
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-97479762022-12-15 Neutrophil trafficking to the site of infection requires Cpt1a-dependent fatty acid β-oxidation Pham, Ly Komalavilas, Padmini Eddie, Alex M. Thayer, Timothy E. Greenwood, Dalton L. Liu, Ken H. Weinberg, Jaclyn Patterson, Andrew Fessel, Joshua P. Boyd, Kelli L. Schafer, Jenny C. Kuck, Jamie L. Shaver, Aaron C. Flaherty, David K. Matlock, Brittany K. Wijers, Christiaan D. M. Serezani, C. Henrique Jones, Dean P. Brittain, Evan L. Rathmell, Jeffrey C. Noto, Michael J. Commun Biol Article Cellular metabolism influences immune cell function, with mitochondrial fatty acid β-oxidation and oxidative phosphorylation required for multiple immune cell phenotypes. Carnitine palmitoyltransferase 1a (Cpt1a) is considered the rate-limiting enzyme for mitochondrial metabolism of long-chain fatty acids, and Cpt1a deficiency is associated with infant mortality and infection risk. This study was undertaken to test the hypothesis that impairment in Cpt1a-dependent fatty acid oxidation results in increased susceptibility to infection. Screening the Cpt1a gene for common variants predicted to affect protein function revealed allele rs2229738_T, which was associated with pneumonia risk in a targeted human phenome association study. Pharmacologic inhibition of Cpt1a increases mortality and impairs control of the infection in a murine model of bacterial pneumonia. Susceptibility to pneumonia is associated with blunted neutrophilic responses in mice and humans that result from impaired neutrophil trafficking to the site of infection. Chemotaxis responsible for neutrophil trafficking requires Cpt1a-dependent mitochondrial fatty acid oxidation for amplification of chemoattractant signals. These findings identify Cpt1a as a potential host determinant of infection susceptibility and demonstrate a requirement for mitochondrial fatty acid oxidation in neutrophil biology. Nature Publishing Group UK 2022-12-13 /pmc/articles/PMC9747976/ /pubmed/36513703 http://dx.doi.org/10.1038/s42003-022-04339-z Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Pham, Ly
Komalavilas, Padmini
Eddie, Alex M.
Thayer, Timothy E.
Greenwood, Dalton L.
Liu, Ken H.
Weinberg, Jaclyn
Patterson, Andrew
Fessel, Joshua P.
Boyd, Kelli L.
Schafer, Jenny C.
Kuck, Jamie L.
Shaver, Aaron C.
Flaherty, David K.
Matlock, Brittany K.
Wijers, Christiaan D. M.
Serezani, C. Henrique
Jones, Dean P.
Brittain, Evan L.
Rathmell, Jeffrey C.
Noto, Michael J.
Neutrophil trafficking to the site of infection requires Cpt1a-dependent fatty acid β-oxidation
title Neutrophil trafficking to the site of infection requires Cpt1a-dependent fatty acid β-oxidation
title_full Neutrophil trafficking to the site of infection requires Cpt1a-dependent fatty acid β-oxidation
title_fullStr Neutrophil trafficking to the site of infection requires Cpt1a-dependent fatty acid β-oxidation
title_full_unstemmed Neutrophil trafficking to the site of infection requires Cpt1a-dependent fatty acid β-oxidation
title_short Neutrophil trafficking to the site of infection requires Cpt1a-dependent fatty acid β-oxidation
title_sort neutrophil trafficking to the site of infection requires cpt1a-dependent fatty acid β-oxidation
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9747976/
https://www.ncbi.nlm.nih.gov/pubmed/36513703
http://dx.doi.org/10.1038/s42003-022-04339-z
work_keys_str_mv AT phamly neutrophiltraffickingtothesiteofinfectionrequirescpt1adependentfattyacidboxidation
AT komalavilaspadmini neutrophiltraffickingtothesiteofinfectionrequirescpt1adependentfattyacidboxidation
AT eddiealexm neutrophiltraffickingtothesiteofinfectionrequirescpt1adependentfattyacidboxidation
AT thayertimothye neutrophiltraffickingtothesiteofinfectionrequirescpt1adependentfattyacidboxidation
AT greenwooddaltonl neutrophiltraffickingtothesiteofinfectionrequirescpt1adependentfattyacidboxidation
AT liukenh neutrophiltraffickingtothesiteofinfectionrequirescpt1adependentfattyacidboxidation
AT weinbergjaclyn neutrophiltraffickingtothesiteofinfectionrequirescpt1adependentfattyacidboxidation
AT pattersonandrew neutrophiltraffickingtothesiteofinfectionrequirescpt1adependentfattyacidboxidation
AT fesseljoshuap neutrophiltraffickingtothesiteofinfectionrequirescpt1adependentfattyacidboxidation
AT boydkellil neutrophiltraffickingtothesiteofinfectionrequirescpt1adependentfattyacidboxidation
AT schaferjennyc neutrophiltraffickingtothesiteofinfectionrequirescpt1adependentfattyacidboxidation
AT kuckjamiel neutrophiltraffickingtothesiteofinfectionrequirescpt1adependentfattyacidboxidation
AT shaveraaronc neutrophiltraffickingtothesiteofinfectionrequirescpt1adependentfattyacidboxidation
AT flahertydavidk neutrophiltraffickingtothesiteofinfectionrequirescpt1adependentfattyacidboxidation
AT matlockbrittanyk neutrophiltraffickingtothesiteofinfectionrequirescpt1adependentfattyacidboxidation
AT wijerschristiaandm neutrophiltraffickingtothesiteofinfectionrequirescpt1adependentfattyacidboxidation
AT serezanichenrique neutrophiltraffickingtothesiteofinfectionrequirescpt1adependentfattyacidboxidation
AT jonesdeanp neutrophiltraffickingtothesiteofinfectionrequirescpt1adependentfattyacidboxidation
AT brittainevanl neutrophiltraffickingtothesiteofinfectionrequirescpt1adependentfattyacidboxidation
AT rathmelljeffreyc neutrophiltraffickingtothesiteofinfectionrequirescpt1adependentfattyacidboxidation
AT notomichaelj neutrophiltraffickingtothesiteofinfectionrequirescpt1adependentfattyacidboxidation