Cargando…
Magainin 2 and PGLa in bacterial membrane mimics IV: Membrane curvature and partitioning
We previously reported that the synergistically enhanced antimicrobial activity of magainin 2 (MG2a) and PGLa is related to membrane adhesion and fusion. Here, we demonstrate that equimolar mixtures of MG2a and L18W-PGLa induce positive monolayer curvature stress and sense, at the same time, positiv...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Biophysical Society
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9748257/ https://www.ncbi.nlm.nih.gov/pubmed/36258677 http://dx.doi.org/10.1016/j.bpj.2022.10.018 |
_version_ | 1785154426991804416 |
---|---|
author | Semeraro, Enrico F. Pajtinka, Peter Marx, Lisa Kabelka, Ivo Leber, Regina Lohner, Karl Vácha, Robert Pabst, Georg |
author_facet | Semeraro, Enrico F. Pajtinka, Peter Marx, Lisa Kabelka, Ivo Leber, Regina Lohner, Karl Vácha, Robert Pabst, Georg |
author_sort | Semeraro, Enrico F. |
collection | PubMed |
description | We previously reported that the synergistically enhanced antimicrobial activity of magainin 2 (MG2a) and PGLa is related to membrane adhesion and fusion. Here, we demonstrate that equimolar mixtures of MG2a and L18W-PGLa induce positive monolayer curvature stress and sense, at the same time, positive mean and Gaussian bilayer curvatures already at low amounts of bound peptide. The combination of both abilities—membrane curvature sensing and inducing—is most likely the base for the synergistically enhanced peptide activity. In addition, our coarse-grained simulations suggest that fusion stalks are promoted by decreasing the free-energy barrier for their formation rather than by stabilizing their shape. We also interrogated peptide partitioning as a function of lipid and peptide concentration using tryptophan fluorescence spectroscopy and peptide-induced leakage of dyes from lipid vesicles. In agreement with a previous report, we find increased membrane partitioning of L18W-PGLa in the presence of MG2a. However, this effect does not prevail to lipid concentrations higher than 1 mM, above which all peptides associate with the lipid bilayers. This implies that synergistic effects of MG2a and L18W-PGLa in previously reported experiments with lipid concentrations >1 mM are due to peptide-induced membrane remodeling and not their specific membrane partitioning. |
format | Online Article Text |
id | pubmed-9748257 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | The Biophysical Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-97482572023-12-06 Magainin 2 and PGLa in bacterial membrane mimics IV: Membrane curvature and partitioning Semeraro, Enrico F. Pajtinka, Peter Marx, Lisa Kabelka, Ivo Leber, Regina Lohner, Karl Vácha, Robert Pabst, Georg Biophys J Articles We previously reported that the synergistically enhanced antimicrobial activity of magainin 2 (MG2a) and PGLa is related to membrane adhesion and fusion. Here, we demonstrate that equimolar mixtures of MG2a and L18W-PGLa induce positive monolayer curvature stress and sense, at the same time, positive mean and Gaussian bilayer curvatures already at low amounts of bound peptide. The combination of both abilities—membrane curvature sensing and inducing—is most likely the base for the synergistically enhanced peptide activity. In addition, our coarse-grained simulations suggest that fusion stalks are promoted by decreasing the free-energy barrier for their formation rather than by stabilizing their shape. We also interrogated peptide partitioning as a function of lipid and peptide concentration using tryptophan fluorescence spectroscopy and peptide-induced leakage of dyes from lipid vesicles. In agreement with a previous report, we find increased membrane partitioning of L18W-PGLa in the presence of MG2a. However, this effect does not prevail to lipid concentrations higher than 1 mM, above which all peptides associate with the lipid bilayers. This implies that synergistic effects of MG2a and L18W-PGLa in previously reported experiments with lipid concentrations >1 mM are due to peptide-induced membrane remodeling and not their specific membrane partitioning. The Biophysical Society 2022-12-06 2022-10-18 /pmc/articles/PMC9748257/ /pubmed/36258677 http://dx.doi.org/10.1016/j.bpj.2022.10.018 Text en © 2022 Biophysical Society. https://creativecommons.org/licenses/by/4.0/This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Articles Semeraro, Enrico F. Pajtinka, Peter Marx, Lisa Kabelka, Ivo Leber, Regina Lohner, Karl Vácha, Robert Pabst, Georg Magainin 2 and PGLa in bacterial membrane mimics IV: Membrane curvature and partitioning |
title | Magainin 2 and PGLa in bacterial membrane mimics IV: Membrane curvature and partitioning |
title_full | Magainin 2 and PGLa in bacterial membrane mimics IV: Membrane curvature and partitioning |
title_fullStr | Magainin 2 and PGLa in bacterial membrane mimics IV: Membrane curvature and partitioning |
title_full_unstemmed | Magainin 2 and PGLa in bacterial membrane mimics IV: Membrane curvature and partitioning |
title_short | Magainin 2 and PGLa in bacterial membrane mimics IV: Membrane curvature and partitioning |
title_sort | magainin 2 and pgla in bacterial membrane mimics iv: membrane curvature and partitioning |
topic | Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9748257/ https://www.ncbi.nlm.nih.gov/pubmed/36258677 http://dx.doi.org/10.1016/j.bpj.2022.10.018 |
work_keys_str_mv | AT semeraroenricof magainin2andpglainbacterialmembranemimicsivmembranecurvatureandpartitioning AT pajtinkapeter magainin2andpglainbacterialmembranemimicsivmembranecurvatureandpartitioning AT marxlisa magainin2andpglainbacterialmembranemimicsivmembranecurvatureandpartitioning AT kabelkaivo magainin2andpglainbacterialmembranemimicsivmembranecurvatureandpartitioning AT leberregina magainin2andpglainbacterialmembranemimicsivmembranecurvatureandpartitioning AT lohnerkarl magainin2andpglainbacterialmembranemimicsivmembranecurvatureandpartitioning AT vacharobert magainin2andpglainbacterialmembranemimicsivmembranecurvatureandpartitioning AT pabstgeorg magainin2andpglainbacterialmembranemimicsivmembranecurvatureandpartitioning |