Cargando…

Using Facebook advertising data to describe the socio-economic situation of Syrian refugees in Lebanon

While the fighting in the Syrian civil war has mostly stopped, an estimated 5.6 million Syrians remain living in neighboring countries. Of these, an estimated 1.5 million are sheltering in Lebanon. Ongoing efforts by organizations such as UNHCR to support the refugee population are often ineffective...

Descripción completa

Detalles Bibliográficos
Autores principales: Fatehkia, Masoomali, del Villar, Zinnya, Koebe, Till, Letouzé, Emmanuel, Lozano, Andres, Al Feel, Roaa, Mrad, Fouad, Weber, Ingmar
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9748280/
https://www.ncbi.nlm.nih.gov/pubmed/36532846
http://dx.doi.org/10.3389/fdata.2022.1033530
Descripción
Sumario:While the fighting in the Syrian civil war has mostly stopped, an estimated 5.6 million Syrians remain living in neighboring countries. Of these, an estimated 1.5 million are sheltering in Lebanon. Ongoing efforts by organizations such as UNHCR to support the refugee population are often ineffective in reaching those most in need. According to UNHCR's 2019 Vulnerability Assessment of Syrian Refugees Report (VASyR), only 44% of the Syrian refugee families eligible for multipurpose cash assistance were provided with help, as the others were not captured in the data. In this project, we are investigating the use of non-traditional data, derived from Facebook advertising data, for population level vulnerability assessment. In a nutshell, Facebook provides advertisers with an estimate of how many of its users match certain targeting criteria, e.g., how many Facebook users currently living in Beirut are “living abroad,” aged 18–34, speak Arabic, and primarily use an iOS device. We evaluate the use of such audience estimates to describe the spatial variation in the socioeconomic situation of Syrian refugees across Lebanon. Using data from VASyR as ground truth, we find that iOS device usage explains 90% of the out-of-sample variance in poverty across the Lebanese governorates. However, evaluating predictions at a smaller spatial resolution also indicate limits related to sparsity, as Facebook, for privacy reasons, does not provide audience estimates for fewer than 1,000 users. Furthermore, comparing the population distribution by age and gender of Facebook users with that of the Syrian refugees from VASyR suggests an under-representation of Syrian women on the social media platform. This work adds to growing body of literature demonstrating the value of anonymous and aggregate Facebook advertising data for analysing large-scale humanitarian crises and migration events.