Cargando…
Predicting phenotype transition probabilities via conditional algorithmic probability approximations
Unravelling the structure of genotype–phenotype (GP) maps is an important problem in biology. Recently, arguments inspired by algorithmic information theory (AIT) and Kolmogorov complexity have been invoked to uncover simplicity bias in GP maps, an exponentially decaying upper bound in phenotype pro...
Autores principales: | Dingle, Kamaludin, Novev, Javor K., Ahnert, Sebastian E., Louis, Ard A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9748496/ https://www.ncbi.nlm.nih.gov/pubmed/36514888 http://dx.doi.org/10.1098/rsif.2022.0694 |
Ejemplares similares
-
Maximum mutational robustness in genotype–phenotype maps follows a self-similar blancmange-like curve
por: Mohanty, Vaibhav, et al.
Publicado: (2023) -
Generic predictions of output probability based on complexities of inputs and outputs
por: Dingle, Kamaludin, et al.
Publicado: (2020) -
Probability Approximations and Beyond
por: Barbour, Andrew, et al.
Publicado: (2012) -
Probability approximations via the poisson clumping heuristic
por: Aldous, David
Publicado: (1989) -
The stochastic dynamics of early epidemics: probability of establishment, initial growth rate, and infection cluster size at first detection
por: Czuppon, Peter, et al.
Publicado: (2021)