Cargando…
In vivo measurement of human brain material properties under quasi-static loading
Computational modelling of the brain requires accurate representation of the tissues concerned. Mechanical testing has numerous challenges, in particular for low strain rates, like neurosurgery, where redistribution of fluid is biomechanically important. A finite-element (FE) model was generated in...
Autores principales: | Bennion, Nicholas J., Zappalá, Stefano, Potts, Matthew, Woolley, Max, Marshall, David, Evans, Sam L. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9748497/ https://www.ncbi.nlm.nih.gov/pubmed/36514891 http://dx.doi.org/10.1098/rsif.2022.0557 |
Ejemplares similares
-
Rapid, non-invasive, in vivo measurement of tissue mechanical properties using gravitational loading and a nonlinear virtual fields method
por: Evans, S. L., et al.
Publicado: (2023) -
Material stiffness variation in mosquito antennae
por: Saltin, B. D., et al.
Publicado: (2019) -
Finite element and deformation analyses predict pattern of bone failure in loaded zebrafish spines
por: Newham, Elis, et al.
Publicado: (2019) -
In vivo biomechanical assessment of iridial deformations and muscle contractions in human eyes
por: Safa, Babak N., et al.
Publicado: (2022) -
A variable heart rate multi-compartmental coupled model of the cardiovascular and respiratory systems
por: Lishak, Sam, et al.
Publicado: (2023)