Cargando…
New onset delirium prediction using machine learning and long short-term memory (LSTM) in electronic health record
OBJECTIVE: To develop and test an accurate deep learning model for predicting new onset delirium in hospitalized adult patients. METHODS: Using electronic health record (EHR) data extracted from a large academic medical center, we developed a model combining long short-term memory (LSTM) and machine...
Autores principales: | Liu, Siru, Schlesinger, Joseph J, McCoy, Allison B, Reese, Thomas J, Steitz, Bryan, Russo, Elise, Koh, Brian, Wright, Adam |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9748586/ https://www.ncbi.nlm.nih.gov/pubmed/36303456 http://dx.doi.org/10.1093/jamia/ocac210 |
Ejemplares similares
-
Using AI-generated suggestions from ChatGPT to optimize clinical decision support
por: Liu, Siru, et al.
Publicado: (2023) -
Structured override reasons for drug-drug interaction alerts in electronic health records
por: Wright, Adam, et al.
Publicado: (2019) -
RETRACTED ARTICLE: Enhanced bat algorithm for COVID-19 short-term forecasting using optimized LSTM
por: Rauf, Hafiz Tayyab, et al.
Publicado: (2021) -
The SMART Platform: early experience enabling substitutable applications for electronic health records
por: Mandl, Kenneth D, et al.
Publicado: (2012) -
Variation in high-priority drug-drug interaction alerts across institutions and electronic health records
por: McEvoy, Dustin S, et al.
Publicado: (2017)