Cargando…

KAT5 histone acetyltransferase mutations in cancer cells

Cancer cells are characterized by accumulation of mutations due to improperly repaired DNA damage. The DNA double strand break is one of the most severe form of damage and several redundant mechanisms have evolved to facilitate accurate repair. During DNA replication and in mitosis, breaks are prima...

Descripción completa

Detalles Bibliográficos
Autores principales: L Hardison, Kimberly, M Hawk, Tila, A Bouley, Renee, C Petreaca, Ruben
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Caltech Library 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9748724/
https://www.ncbi.nlm.nih.gov/pubmed/36530474
http://dx.doi.org/10.17912/micropub.biology.000676
Descripción
Sumario:Cancer cells are characterized by accumulation of mutations due to improperly repaired DNA damage. The DNA double strand break is one of the most severe form of damage and several redundant mechanisms have evolved to facilitate accurate repair. During DNA replication and in mitosis, breaks are primarily repaired by homologous recombination which is facilitated by several genes. Key to this process is the breast cancer susceptibility genes BRCA1 and BRCA2 as well as the accessory RAD52 gene. Proper chromatin remodeling is also essential for repair and the KAT5 histone acetyltransferase facilitates histone removal at the break. Here we undertook a pan cancer analysis to investigate mutations within the KAT5 gene in cancer cells. We employed two standard artificial algorithms to classify mutations as either driver (CHASMPlus algorithm) or pathogenic (VEST4 algorithm). We find that most predicted driver and disease-causing mutations occur in the catalytic site or within key regulatory domains. In silico analysis of protein structure using AlphaFold shows that these mutations are likely to destabilize the function of KAT5 or interactions with DNA or its other partners. The data presented here, although preliminary, could be used to inform clinical strategies.