Cargando…
Changes in air pollutants during the COVID-19 lockdown in Beijing: Insights from a machine-learning technique and implications for future control policy
The COVID-19 lockdowns led to abrupt reductions in human-related emissions worldwide and had an unintended impact on air quality improvement. However, quantifying this impact is difficult as meteorological conditions may mask the real effect of changes in emissions on the observed concentrations of...
Autores principales: | Hu, Jiabao, Pan, Yuepeng, He, Yuexin, Chi, Xiyuan, Zhang, Qianqian, Song, Tao, Shen, Weishou |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Authors. Publishing Services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9748733/ http://dx.doi.org/10.1016/j.aosl.2021.100060 |
Ejemplares similares
-
Lockdown effects of the COVID-19 on the spatio-temporal distribution of air pollution in Beijing, China
por: Wu, Min, et al.
Publicado: (2023) -
Changing weekend effects of air pollutants in Beijing under 2020 COVID-19 lockdown controls
por: Wu, Lingyun, et al.
Publicado: (2022) -
Estimation of Citywide Air Pollution in Beijing
por: Wang, Jin-Feng, et al.
Publicado: (2013) -
Using Explainable
Machine Learning to Interpret the
Effects of Policies on Air Pollution: COVID-19 Lockdown in London
por: Ma, Liang, et al.
Publicado: (2023) -
COVID-2019 lockdown in Beijing: A rare opportunity to analyze the contribution rate of road traffic to air pollutants
por: Xin, Yalu, et al.
Publicado: (2021)