Cargando…

Segmentation of biventricle in cardiac cine MRI via nested capsule dense network

BACKGROUND: Cardiac magnetic resonance image (MRI) has been widely used in diagnosis of cardiovascular diseases because of its noninvasive nature and high image quality. The evaluation standard of physiological indexes in cardiac diagnosis is essentially the accuracy of segmentation of left ventricl...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Jilong, Zhang, Yajuan, Zhang, Hongyang, Zhang, Quan, Su, Weihua, Guo, Shijie, Wang, Yuanquan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: PeerJ Inc. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9748817/
https://www.ncbi.nlm.nih.gov/pubmed/36532806
http://dx.doi.org/10.7717/peerj-cs.1146
Descripción
Sumario:BACKGROUND: Cardiac magnetic resonance image (MRI) has been widely used in diagnosis of cardiovascular diseases because of its noninvasive nature and high image quality. The evaluation standard of physiological indexes in cardiac diagnosis is essentially the accuracy of segmentation of left ventricle (LV) and right ventricle (RV) in cardiac MRI. The traditional symmetric single codec network structure such as U-Net tends to expand the number of channels to make up for lost information that results in the network looking cumbersome. METHODS: Instead of a single codec, we propose a multiple codecs structure based on the FC-DenseNet (FCD) model and capsule convolution-capsule deconvolution, named Nested Capsule Dense Network (NCDN). NCDN uses multiple codecs to achieve multi-resolution, which makes it possible to save more spatial information and improve the robustness of the model. RESULTS: The proposed model is tested on three datasets that include the York University Cardiac MRI dataset, Automated Cardiac Diagnosis Challenge (ACDC-2017), and the local dataset. The results show that the proposed NCDN outperforms most methods. In particular, we achieved nearly the most advanced accuracy performance in the ACDC-2017 segmentation challenge. This means that our method is a reliable segmentation method, which is conducive to the application of deep learning-based segmentation methods in the field of medical image segmentation.