Cargando…
A survey of field programmable gate array (FPGA)-based graph convolutional neural network accelerators: challenges and opportunities
Graph convolutional networks (GCNs) based on convolutional operations have been developed recently to extract high-level representations from graph data. They have shown advantages in many critical applications, such as recommendation system, natural language processing, and prediction of chemical r...
Autores principales: | Li, Shun, Tao, Yuxuan, Tang, Enhao, Xie, Ting, Chen, Ruiqi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9748818/ https://www.ncbi.nlm.nih.gov/pubmed/36532812 http://dx.doi.org/10.7717/peerj-cs.1166 |
Ejemplares similares
-
Real-Time Inference With 2D Convolutional Neural Networks on Field Programmable Gate Arrays for High-Rate Particle Imaging Detectors
por: Jwa, Yeon-jae, et al.
Publicado: (2022) -
Relational graph convolutional networks: a closer look
por: Thanapalasingam, Thiviyan, et al.
Publicado: (2022) -
Attention enhanced capsule network for text classification by encoding syntactic dependency trees with graph convolutional neural network
por: Jia, Xudong, et al.
Publicado: (2022) -
Derivative-free optimization adversarial attacks for graph convolutional networks
por: Yang, Runze, et al.
Publicado: (2021) -
Effect of neural network structure in accelerating performance and accuracy of a convolutional neural network with GPU/TPU for image analytics
por: Ravikumar, Aswathy, et al.
Publicado: (2022)