Cargando…
Exposing the Limitations of Molecular Machine Learning with Activity Cliffs
[Image: see text] Machine learning has become a crucial tool in drug discovery and chemistry at large, e.g., to predict molecular properties, such as bioactivity, with high accuracy. However, activity cliffs—pairs of molecules that are highly similar in their structure but exhibit large differences...
Autores principales: | van Tilborg, Derek, Alenicheva, Alisa, Grisoni, Francesca |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2022
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9749029/ https://www.ncbi.nlm.nih.gov/pubmed/36456532 http://dx.doi.org/10.1021/acs.jcim.2c01073 |
Ejemplares similares
-
Correction to “Exposing
the Limitations of
Molecular Machine Learning with Activity Cliffs”
por: van Tilborg, Derek, et al.
Publicado: (2023) -
Prediction of Promiscuity Cliffs Using Machine Learning
por: Blaschke, Thomas, et al.
Publicado: (2020) -
Increasing the public activity cliff knowledge base with new categories of activity cliffs
por: Hu, Huabin, et al.
Publicado: (2020) -
Large-scale prediction of activity cliffs using machine and deep learning methods of increasing complexity
por: Tamura, Shunsuke, et al.
Publicado: (2023) -
Advancing the activity cliff concept
por: Hu, Ye, et al.
Publicado: (2013)