Cargando…
High-dimensional neural network potentials for accurate vibrational frequencies: the formic acid dimer benchmark
In recent years, machine learning potentials (MLP) for atomistic simulations have attracted a lot of attention in chemistry and materials science. Many new approaches have been developed with the primary aim to transfer the accuracy of electronic structure calculations to large condensed systems con...
Autores principales: | Shanavas Rasheeda, Dilshana, Martín Santa Daría, Alberto, Schröder, Benjamin, Mátyus, Edit, Behler, Jörg |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9749085/ https://www.ncbi.nlm.nih.gov/pubmed/36459127 http://dx.doi.org/10.1039/d2cp03893e |
Ejemplares similares
-
Transfer learned potential energy surfaces: accurate anharmonic vibrational dynamics and dissociation energies for the formic acid monomer and dimer
por: Käser, Silvan, et al.
Publicado: (2021) -
Correction: Transfer learned potential energy surfaces: accurate anharmonic vibrational dynamics and dissociation energies for the formic acid monomer and dimer
por: Käser, Silvan, et al.
Publicado: (2022) -
Benchmarking Catalysts for Formic Acid/Formate Electrooxidation
por: Folkman, Scott J., et al.
Publicado: (2021) -
On the vibrations of formic acid predicted from first principles
por: Kelemen, Anna Klára, et al.
Publicado: (2022) -
A fourth-generation high-dimensional neural network potential with accurate electrostatics including non-local charge transfer
por: Ko, Tsz Wai, et al.
Publicado: (2021)