Cargando…
A lightweight hierarchical convolution network for brain tumor segmentation
BACKGROUND: Brain tumor segmentation plays a significant role in clinical treatment and surgical planning. Recently, several deep convolutional networks have been proposed for brain tumor segmentation and have achieved impressive performance. However, most state-of-the-art models use 3D convolution...
Autores principales: | Wang, Yuhu, Cao, Yuzhen, Li, Jinqiu, Wu, Hongtao, Wang, Shuo, Dong, Xinming, Yu, Hui |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9749147/ https://www.ncbi.nlm.nih.gov/pubmed/36513986 http://dx.doi.org/10.1186/s12859-022-05039-5 |
Ejemplares similares
-
Satellite cloud image segmentation based on lightweight convolutional neural network
por: Li, Xi, et al.
Publicado: (2023) -
Rethinking 1D convolution for lightweight semantic segmentation
por: Zhang, Chunyu, et al.
Publicado: (2023) -
A lightweight multi-dimension dynamic convolutional network for real-time semantic segmentation
por: Zhang, Chunyu, et al.
Publicado: (2022) -
A Lightweight Convolutional Neural Network Model for Liver Segmentation in Medical Diagnosis
por: Ahmad, Mubashir, et al.
Publicado: (2022) -
A Lightweight Semantic Segmentation Algorithm Based on Deep Convolutional Neural Networks
por: Yang, Chengzhi, et al.
Publicado: (2022)