Cargando…

Predictive clinical utility of pre-hospital point of care lactate for transfusion of blood product in patients with suspected traumatic haemorrhage: derivation of a decision-support tool

INTRODUCTION: Pre-hospital emergency medical teams can transfuse blood products to patients with suspected major traumatic haemorrhage. Common transfusion triggers based on physiological parameters have several disadvantages and are largely unvalidated in guiding pre-hospital transfusion. The additi...

Descripción completa

Detalles Bibliográficos
Autores principales: Griggs, J. E., Lyon, R. M., Sherriff, M., Barrett, J. W., Wareham, G., ter Avest, E.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9749287/
https://www.ncbi.nlm.nih.gov/pubmed/36514084
http://dx.doi.org/10.1186/s13049-022-01061-x
Descripción
Sumario:INTRODUCTION: Pre-hospital emergency medical teams can transfuse blood products to patients with suspected major traumatic haemorrhage. Common transfusion triggers based on physiological parameters have several disadvantages and are largely unvalidated in guiding pre-hospital transfusion. The addition of pre-hospital lactate (P-LACT) may overcome these challenges. To date, the clinical utility of P-LACT to guide pre-hospital blood transfusion is unclear. METHODS: A retrospective analysis of patients with suspected major traumatic haemorrhage attended by Air Ambulance Charity Kent Surrey Sussex (KSS) between 8 July 2017 and 31 December 2019. The primary endpoint was the accuracy of P-LACT to predict the requirement for any in-hospital (continued) transfusion of blood product. RESULTS: During the study period, 306 patients with suspected major traumatic haemorrhage were attended by KSS. P-LACT was obtained in 194 patients. In the cohort 103 (34%) patients were declared Code Red. A pre-hospital transfusion was commenced in 124 patients (41%) and in-hospital transfusion was continued in 100 (81%) of these patients, in 24 (19%) patients it was ceased. Predictive probabilities of various lactate cut-off points for requirement of in-hospital transfusion are documented. The highest overall proportion correctly classified patients were found for a P-LACT cut-point of 5.4 mmol/L (76.50% correctly classified). Based on the calculated predictive probabilities, optimal cut-off points were derived for both the exclusion- and inclusion of the need for in-hospital transfusion. A P-LACT < 2.5 mmol/L had a sensitivity of 80.28% and a negative likelihood ratio [LR−] of 0.37 for the prediction of in-hospital transfusion requirement, whereas a P-LACT of 6.0 mmol/L had a specificity of 99.22%, [LR−] = 0.78. CONCLUSION: Pre-hospital lactate measurements can be used to predict the need for (continued) in-hospital blood products in addition to current physiological parameters. A simple decision support tool derived in this study can help the clinician interpret pre-hospital lactate results and guide pre-hospital interventions in the major trauma patient.