Cargando…
Bona fide atypical scrapie faithfully reproduced for the first time in a rodent model
Atypical Scrapie, which is not linked to epidemics, is assumed to be an idiopathic spontaneous prion disease in small ruminants. Therefore, its occurrence is unlikely to be controlled through selective breeding or other strategies as it is done for classical scrapie outbreaks. Its spontaneous nature...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9749341/ https://www.ncbi.nlm.nih.gov/pubmed/36514160 http://dx.doi.org/10.1186/s40478-022-01477-7 |
Sumario: | Atypical Scrapie, which is not linked to epidemics, is assumed to be an idiopathic spontaneous prion disease in small ruminants. Therefore, its occurrence is unlikely to be controlled through selective breeding or other strategies as it is done for classical scrapie outbreaks. Its spontaneous nature and its sporadic incidence worldwide is reminiscent of the incidence of idiopathic spontaneous prion diseases in humans, which account for more than 85% of the cases in humans. Hence, developing animal models that consistently reproduce this phenomenon of spontaneous PrP misfolding, is of importance to study the pathobiology of idiopathic spontaneous prion disorders. Transgenic mice overexpressing sheep PrP(C) with I112 polymorphism (TgShI112, 1–2 × PrP levels compared to sheep brain) manifest clinical signs of a spongiform encephalopathy spontaneously as early as 380 days of age. The brains of these animals show the neuropathological hallmarks of prion disease and biochemical analyses of the misfolded prion protein show a ladder-like PrP(res) pattern with a predominant 7–10 kDa band. Brain homogenates from spontaneously diseased transgenic mice were inoculated in several models to assess their transmissibility and characterize the prion strain generated: TgShI112 (ovine I112 ARQ PrP(C)), Tg338 (ovine VRQ PrP(C)), Tg501 (ovine ARQ PrP(C)), Tg340 (human M129 PrP(C)), Tg361 (human V129 PrP(C)), TgVole (bank vole I109 PrP(C)), bank vole (I109I PrP(C)), and sheep (AHQ/ARR and AHQ/AHQ churra-tensina breeds). Our analysis of the results of these bioassays concludes that the strain generated in this model is indistinguishable to that causing atypical scrapie (Nor98). Thus, we present the first faithful model for a bona fide, transmissible, ovine, atypical scrapie prion disease. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s40478-022-01477-7. |
---|