Cargando…
Minimal reporting improvement after peer review in reports of COVID-19 prediction models: systematic review
OBJECTIVES: To assess improvement in the completeness of reporting coronavirus (COVID-19) prediction models after the peer review process. STUDY DESIGN AND SETTING: Studies included in a living systematic review of COVID-19 prediction models, with both preprint and peer-reviewed published versions a...
Autores principales: | Hudda, Mohammed T., Archer, Lucinda, van Smeden, Maarten, Moons, Karel G.M., Collins, Gary S., Steyerberg, Ewout W., Wahlich, Charlotte, Reitsma, Johannes B., Riley, Richard D., Van Calster, Ben, Wynants, Laure |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Authors. Published by Elsevier Inc.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9749392/ https://www.ncbi.nlm.nih.gov/pubmed/36528232 http://dx.doi.org/10.1016/j.jclinepi.2022.12.005 |
Ejemplares similares
-
There is no such thing as a validated prediction model
por: Van Calster, Ben, et al.
Publicado: (2023) -
Calibration: the Achilles heel of predictive analytics
por: Van Calster, Ben, et al.
Publicado: (2019) -
Three myths about risk thresholds for prediction models
por: Wynants, Laure, et al.
Publicado: (2019) -
Predicting COVID-19 prognosis in the ICU remained challenging: external validation in a multinational regional cohort
por: Meijs, Daniek A.M., et al.
Publicado: (2022) -
Predictive analytics in health care: how can we know it works?
por: Van Calster, Ben, et al.
Publicado: (2019)