Cargando…
Functionalized biological metal–organic framework with nanosized coronal structure and hierarchical wrapping pattern for enhanced targeting therapy
Inefficient tumor-targeted delivery and uncontrolled drug release are the major obstacles in cancer chemotherapy. Herein, inspired by the targeting advantage of coronavirus from its size and coronal structure, a coronal biological metal–organic framework nanovehicle (named as corona-BioMOF) is const...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier B.V.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9749395/ https://www.ncbi.nlm.nih.gov/pubmed/36531859 http://dx.doi.org/10.1016/j.cej.2022.140963 |
Sumario: | Inefficient tumor-targeted delivery and uncontrolled drug release are the major obstacles in cancer chemotherapy. Herein, inspired by the targeting advantage of coronavirus from its size and coronal structure, a coronal biological metal–organic framework nanovehicle (named as corona-BioMOF) is constructed for improving its precise cancer targeting ability. The designed corona-BioMOF is constructed as the carriers-encapsulated carrier model by inner coated with abundant protein-nanocaged doxorubicin particles and external decorated with high-affinity apoferritin proteins to form the spiky surface for constructing the specific coronal structure. The corona-BioMOF shows a higher affinity and an enhanced targeting ability towards receptor-positive cancer cells compared to that of MOF-drug composites without spiky surface. It also exhibits the hierarchical wrapping pattern-endowed controlled lysosome-specific drug release and remarkable tumor lethality in vivo. Moreover, water-induced surface defect-based protein handle mechanism is first proposed to shape the coronal-BioMOF. This work will provide a better inspiration for nanovehicle construction and be broadly useful for clinical precision nanomedicine. |
---|