Cargando…

Functionalized biological metal–organic framework with nanosized coronal structure and hierarchical wrapping pattern for enhanced targeting therapy

Inefficient tumor-targeted delivery and uncontrolled drug release are the major obstacles in cancer chemotherapy. Herein, inspired by the targeting advantage of coronavirus from its size and coronal structure, a coronal biological metal–organic framework nanovehicle (named as corona-BioMOF) is const...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Huafeng, Li, Shi, Wang, Lei, Liao, Zimei, Zhang, Hang, Wei, Tianxiang, Dai, Zhihui
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier B.V. 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9749395/
https://www.ncbi.nlm.nih.gov/pubmed/36531859
http://dx.doi.org/10.1016/j.cej.2022.140963
Descripción
Sumario:Inefficient tumor-targeted delivery and uncontrolled drug release are the major obstacles in cancer chemotherapy. Herein, inspired by the targeting advantage of coronavirus from its size and coronal structure, a coronal biological metal–organic framework nanovehicle (named as corona-BioMOF) is constructed for improving its precise cancer targeting ability. The designed corona-BioMOF is constructed as the carriers-encapsulated carrier model by inner coated with abundant protein-nanocaged doxorubicin particles and external decorated with high-affinity apoferritin proteins to form the spiky surface for constructing the specific coronal structure. The corona-BioMOF shows a higher affinity and an enhanced targeting ability towards receptor-positive cancer cells compared to that of MOF-drug composites without spiky surface. It also exhibits the hierarchical wrapping pattern-endowed controlled lysosome-specific drug release and remarkable tumor lethality in vivo. Moreover, water-induced surface defect-based protein handle mechanism is first proposed to shape the coronal-BioMOF. This work will provide a better inspiration for nanovehicle construction and be broadly useful for clinical precision nanomedicine.