Cargando…
Highway traffic flow prediction model with multi-component spatial–temporal graph convolution networks
In order to effectively solve the problems of redundant medical material allocation, unbalanced material allocation, high distribution cost and lack of symmetry caused by unreasonable prediction in the case of sudden epidemic disasters, the prospect theory is introduced to establish a two-stage robu...
Autores principales: | Ning, Tao, Han, Yumeng, Wang, Jiayu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9749628/ https://www.ncbi.nlm.nih.gov/pubmed/36517499 http://dx.doi.org/10.1038/s41598-022-18027-9 |
Ejemplares similares
-
Cross-Attention Fusion Based Spatial-Temporal Multi-Graph Convolutional Network for Traffic Flow Prediction
por: Yu, Kun, et al.
Publicado: (2021) -
STHSGCN: Spatial-temporal heterogeneous and synchronous graph convolution network for traffic flow prediction
por: Yu, Xian, et al.
Publicado: (2023) -
MD-GCN: A Multi-Scale Temporal Dual Graph Convolution Network for Traffic Flow Prediction
por: Huang, Xiaohui, et al.
Publicado: (2023) -
Multicomponent Spatial-Temporal Graph Attention Convolution Networks for Traffic Prediction with Spatially Sparse Data
por: Liu, Shaohua, et al.
Publicado: (2021) -
Graph Convolutional Network: Traffic Speed Prediction Fused with Traffic Flow Data
por: Liu, Duanyang, et al.
Publicado: (2021)