Cargando…
Aspirin mediates protection from diabetic kidney disease by inducing ferroptosis inhibition
Diabetic kidney disease (DKD) progression can be predicted by abnormalities in the tubulointerstitial lining, and their treatment may be useful for preventing the disease. DKD is a progressive disease that contributes to renal tubular cell death, but its underlying mechanisms remain unclear. Ferropt...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9749971/ https://www.ncbi.nlm.nih.gov/pubmed/36516169 http://dx.doi.org/10.1371/journal.pone.0279010 |
_version_ | 1784850145479753728 |
---|---|
author | Wu, Ziyu Li, Dan Tian, Dingyuan Liu, Xuejun Wu, Zhongming |
author_facet | Wu, Ziyu Li, Dan Tian, Dingyuan Liu, Xuejun Wu, Zhongming |
author_sort | Wu, Ziyu |
collection | PubMed |
description | Diabetic kidney disease (DKD) progression can be predicted by abnormalities in the tubulointerstitial lining, and their treatment may be useful for preventing the disease. DKD is a progressive disease that contributes to renal tubular cell death, but its underlying mechanisms remain unclear. Ferroptosis is a novel term linked to lipid hydroperoxidation, and it plays an important role in the pathogenesis of DKD. Overexpression of cyclooxygenase-2 (COX2), an enzyme of the proximal tubule, causes cellular redox damage in DKD. It remains unknown whether COX2 exacerbates tubular damage by accelerating ferroptosis in the kidneys of diabetic mice. HK-2 cells cultured in high glucose exhibited ferroptosis, which was inhibited by ferroptosis inhibitors. Additionally, alterations in the sensors of ferroptosis metabolism, such as glutathione peroxidase 4 (GPX4) activity, lipid hydroperoxidation, reduced glutathione (GSH) levels and changes in mitochondrial morphology, were observed in high glucose-cultured HK-2 cells. Diabetic mice manifested tubular injury and deranged renal physiological indices, which were mitigated by ferrostatin-1 (Fer-1). Importantly, these perturbations were ameliorated by downregulating COX2. In addition, the increased COX2 was observed to be elevated in the daibetic kindney. To explore the relevance of COX2 to ferroptosis, HK-2 cells that knocked down from COX2 exhibited decreased ferroptosis sensitivity under high glucose conditions. In RSL-3-treated HK-2 cells, ferroptosis was improved by downregulating COX2 by treatment with aspirin, which was confirmed in high glucose-cultured HK-2 cells. Furthermore, the ferroptosis changes were also suppressed by decreasing COX2 in diabetic mice treated with aspirin, which retarded DKD progression. In conclusion, our results demonstrated that ferroptosis in renal tubular cells contributes to DKD development and that diabetes-related ferroptosis was inhibited through the downregulation of COX2 by aspirin, thus retarding the progression of DKD. Our findings support a renoprotective mechanism by which aspirin inhibits COX2 activation, identify COX2 as a potential target of ferroptosis, and establish that ferroptosis in renal tubular cells is an integral process in the pathogenesis of DKD regulated by COX2 expression profiles. |
format | Online Article Text |
id | pubmed-9749971 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-97499712022-12-15 Aspirin mediates protection from diabetic kidney disease by inducing ferroptosis inhibition Wu, Ziyu Li, Dan Tian, Dingyuan Liu, Xuejun Wu, Zhongming PLoS One Research Article Diabetic kidney disease (DKD) progression can be predicted by abnormalities in the tubulointerstitial lining, and their treatment may be useful for preventing the disease. DKD is a progressive disease that contributes to renal tubular cell death, but its underlying mechanisms remain unclear. Ferroptosis is a novel term linked to lipid hydroperoxidation, and it plays an important role in the pathogenesis of DKD. Overexpression of cyclooxygenase-2 (COX2), an enzyme of the proximal tubule, causes cellular redox damage in DKD. It remains unknown whether COX2 exacerbates tubular damage by accelerating ferroptosis in the kidneys of diabetic mice. HK-2 cells cultured in high glucose exhibited ferroptosis, which was inhibited by ferroptosis inhibitors. Additionally, alterations in the sensors of ferroptosis metabolism, such as glutathione peroxidase 4 (GPX4) activity, lipid hydroperoxidation, reduced glutathione (GSH) levels and changes in mitochondrial morphology, were observed in high glucose-cultured HK-2 cells. Diabetic mice manifested tubular injury and deranged renal physiological indices, which were mitigated by ferrostatin-1 (Fer-1). Importantly, these perturbations were ameliorated by downregulating COX2. In addition, the increased COX2 was observed to be elevated in the daibetic kindney. To explore the relevance of COX2 to ferroptosis, HK-2 cells that knocked down from COX2 exhibited decreased ferroptosis sensitivity under high glucose conditions. In RSL-3-treated HK-2 cells, ferroptosis was improved by downregulating COX2 by treatment with aspirin, which was confirmed in high glucose-cultured HK-2 cells. Furthermore, the ferroptosis changes were also suppressed by decreasing COX2 in diabetic mice treated with aspirin, which retarded DKD progression. In conclusion, our results demonstrated that ferroptosis in renal tubular cells contributes to DKD development and that diabetes-related ferroptosis was inhibited through the downregulation of COX2 by aspirin, thus retarding the progression of DKD. Our findings support a renoprotective mechanism by which aspirin inhibits COX2 activation, identify COX2 as a potential target of ferroptosis, and establish that ferroptosis in renal tubular cells is an integral process in the pathogenesis of DKD regulated by COX2 expression profiles. Public Library of Science 2022-12-14 /pmc/articles/PMC9749971/ /pubmed/36516169 http://dx.doi.org/10.1371/journal.pone.0279010 Text en © 2022 Wu et al https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Wu, Ziyu Li, Dan Tian, Dingyuan Liu, Xuejun Wu, Zhongming Aspirin mediates protection from diabetic kidney disease by inducing ferroptosis inhibition |
title | Aspirin mediates protection from diabetic kidney disease by inducing ferroptosis inhibition |
title_full | Aspirin mediates protection from diabetic kidney disease by inducing ferroptosis inhibition |
title_fullStr | Aspirin mediates protection from diabetic kidney disease by inducing ferroptosis inhibition |
title_full_unstemmed | Aspirin mediates protection from diabetic kidney disease by inducing ferroptosis inhibition |
title_short | Aspirin mediates protection from diabetic kidney disease by inducing ferroptosis inhibition |
title_sort | aspirin mediates protection from diabetic kidney disease by inducing ferroptosis inhibition |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9749971/ https://www.ncbi.nlm.nih.gov/pubmed/36516169 http://dx.doi.org/10.1371/journal.pone.0279010 |
work_keys_str_mv | AT wuziyu aspirinmediatesprotectionfromdiabetickidneydiseasebyinducingferroptosisinhibition AT lidan aspirinmediatesprotectionfromdiabetickidneydiseasebyinducingferroptosisinhibition AT tiandingyuan aspirinmediatesprotectionfromdiabetickidneydiseasebyinducingferroptosisinhibition AT liuxuejun aspirinmediatesprotectionfromdiabetickidneydiseasebyinducingferroptosisinhibition AT wuzhongming aspirinmediatesprotectionfromdiabetickidneydiseasebyinducingferroptosisinhibition |