Cargando…
LaGAT: link-aware graph attention network for drug–drug interaction prediction
MOTIVATION: Drug–drug interaction (DDI) prediction is a challenging problem in pharmacology and clinical applications. With the increasing availability of large biomedical databases, large-scale biological knowledge graphs containing drug information have been widely used for DDI prediction. However...
Autores principales: | Hong, Yue, Luo, Pengyu, Jin, Shuting, Liu, Xiangrong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9750103/ https://www.ncbi.nlm.nih.gov/pubmed/36271850 http://dx.doi.org/10.1093/bioinformatics/btac682 |
Ejemplares similares
-
omicsGAT: Graph Attention Network for Cancer Subtype Analyses
por: Baul, Sudipto, et al.
Publicado: (2022) -
TemporalGAT: Attention-Based Dynamic Graph Representation Learning
por: Fathy, Ahmed, et al.
Publicado: (2020) -
Prediction of Drug-Drug Interaction Using an Attention-Based Graph Neural Network on Drug Molecular Graphs
por: Feng, Yue-Hua, et al.
Publicado: (2022) -
sAMPpred-GAT: prediction of antimicrobial peptide by graph attention network and predicted peptide structure
por: Yan, Ke, et al.
Publicado: (2022) -
GAT-LI: a graph attention network based learning and interpreting method for functional brain network classification
por: Hu, Jinlong, et al.
Publicado: (2021)